Home
Class 9
MATHS
If (1)/(log(a)x) + (1)/(log(b)x) = (2)/(...

If `(1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x)`, prove that : `c^(2) = ab`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( c^2 = ab \) given the equation \[ \frac{1}{\log_a x} + \frac{1}{\log_b x} = \frac{2}{\log_c x}, \] we can follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula. Using the change of base formula, we can express the logarithms as: \[ \log_a x = \frac{\log x}{\log a}, \quad \log_b x = \frac{\log x}{\log b}, \quad \text{and} \quad \log_c x = \frac{\log x}{\log c}. \] ### Step 2: Substitute the rewritten logarithms into the equation. Substituting these into the original equation gives: \[ \frac{1}{\frac{\log x}{\log a}} + \frac{1}{\frac{\log x}{\log b}} = \frac{2}{\frac{\log x}{\log c}}. \] This simplifies to: \[ \frac{\log a}{\log x} + \frac{\log b}{\log x} = \frac{2 \log c}{\log x}. \] ### Step 3: Combine the left-hand side. Combining the left-hand side: \[ \frac{\log a + \log b}{\log x} = \frac{2 \log c}{\log x}. \] ### Step 4: Eliminate the common denominator. Since \(\log x\) is common in both sides and assuming \(\log x \neq 0\), we can eliminate it: \[ \log a + \log b = 2 \log c. \] ### Step 5: Use the properties of logarithms. Using the property of logarithms that states \(\log m + \log n = \log(mn)\), we can rewrite the left-hand side: \[ \log(ab) = 2 \log c. \] ### Step 6: Rewrite the right-hand side. Using the property that \(k \log m = \log(m^k)\), we can rewrite the right-hand side: \[ \log(ab) = \log(c^2). \] ### Step 7: Equate the arguments of the logarithms. Since the logarithms are equal, we can equate their arguments: \[ ab = c^2. \] ### Conclusion Thus, we have proved that \[ c^2 = ab. \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

Evaluate : (1)/(log_(a)bc + 1) + (1)/(log_(b)ca + 1) + (1)/(log_(c) ab + 1)

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

If "log"_(ax)x, "log"_(bx) x, "log"_(cx)x are in H.P., where a, b, c, x belong to (1, oo) , then a, b, c are in

Find x, if : (i) log_(3) x = 0 (ii) log_(x) 2 = -1 (iii) log_(9) 243 = x (iv) log_(5) (x - 7) = 1 (v) log_(4) 32 = x - 4 (vi) log_(7) (2x^(2) - 1) = 2

If 3^(x) = 4^(x-1) , then x = a. (2 log_(3) 2)/(2log_(3) 2-1) b. 2/(2-log_(2)3) c. 1/(1-log_(4)3) d. (2 log_(2)3)/(2 log_(2) 3-1)

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If (1)/(log(a)x) + (1)/(log(b)x) = (2)/(log(c)x), prove that : c^(2) =...

    Text Solution

    |

  2. If (3)/(2) log a + (2)/(3) log b - 1 = 0, find the value of a^(9).b^(4...

    Text Solution

    |

  3. If x = 1 + log 2 - log 5, y = 2 log 3 and z = log a - log 5, find the ...

    Text Solution

    |

  4. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  5. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  6. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  7. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  8. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  9. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  10. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  11. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  12. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  13. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  14. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  15. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  16. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  17. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  18. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  19. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  20. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  21. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |