Home
Class 9
MATHS
If x = 1 + log 2 - log 5, y = 2 log 3 an...

If `x = 1 + log 2 - log 5, y = 2 log 3 and z = log a - log 5`, find the value of a, if x + y = 2z.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) given the equations for \( x \), \( y \), and \( z \) and the condition \( x + y = 2z \). ### Step-by-Step Solution: 1. **Write down the given equations:** \[ x = 1 + \log 2 - \log 5 \] \[ y = 2 \log 3 \] \[ z = \log a - \log 5 \] 2. **Set up the equation based on the condition \( x + y = 2z \):** \[ (1 + \log 2 - \log 5) + (2 \log 3) = 2(\log a - \log 5) \] 3. **Simplify the left-hand side:** \[ 1 + \log 2 - \log 5 + 2 \log 3 = 1 + \log 2 + \log 9 - \log 5 \] (since \( 2 \log 3 = \log 3^2 = \log 9 \)) 4. **Rewrite \( 1 \) as \( \log 10 \):** \[ \log 10 + \log 2 + \log 9 - \log 5 \] 5. **Combine the logarithms on the left-hand side:** Using the property \( \log m + \log n = \log(m \cdot n) \): \[ \log \left(10 \cdot 2 \cdot 9\right) - \log 5 = \log \left(\frac{10 \cdot 2 \cdot 9}{5}\right) \] \[ = \log \left(\frac{180}{5}\right) = \log 36 \] 6. **Now simplify the right-hand side:** \[ 2(\log a - \log 5) = 2 \log \left(\frac{a}{5}\right) = \log \left(\left(\frac{a}{5}\right)^2\right) = \log \left(\frac{a^2}{25}\right) \] 7. **Set the left-hand side equal to the right-hand side:** \[ \log 36 = \log \left(\frac{a^2}{25}\right) \] 8. **Since the logarithms are equal, we can set the arguments equal:** \[ 36 = \frac{a^2}{25} \] 9. **Multiply both sides by 25:** \[ 36 \cdot 25 = a^2 \] \[ a^2 = 900 \] 10. **Take the square root of both sides:** \[ a = 30 \quad (\text{since } a > 0) \] ### Final Answer: \[ a = 30 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Given 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, find m.

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

Find x, if : 2 + log x = log 45 - log 2 + log 16 - 2 log 3.

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If (3)/(2) log a + (2)/(3) log b - 1 = 0, find the value of a^(9).b^(4...

    Text Solution

    |

  2. If x = 1 + log 2 - log 5, y = 2 log 3 and z = log a - log 5, find the ...

    Text Solution

    |

  3. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  4. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  5. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  6. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  7. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  8. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  9. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  10. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  11. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  12. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  13. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  14. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  15. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  16. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  17. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  18. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  19. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  20. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |