Home
Class 9
MATHS
If m = log 20 and n = log 25, find the v...

If m = log 20 and n = log 25, find the value of x, so that : 2 log(x - 4) = 2m - n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2 \log(x - 4) = 2m - n\) given that \(m = \log 20\) and \(n = \log 25\), we will follow these steps: ### Step 1: Substitute the values of \(m\) and \(n\) We know: - \(m = \log 20\) - \(n = \log 25\) Substituting these into the equation gives: \[ 2 \log(x - 4) = 2 \log 20 - \log 25 \] ### Step 2: Simplify the right side Using the properties of logarithms, we can rewrite \(2 \log 20\) as \(\log(20^2)\) and \(n\) as \(\log 25\): \[ 2 \log 20 = \log(20^2) = \log 400 \] Thus, we have: \[ 2 \log(x - 4) = \log 400 - \log 25 \] ### Step 3: Apply the quotient rule of logarithms Using the property \(\log a - \log b = \log\left(\frac{a}{b}\right)\), we can simplify the right side: \[ \log 400 - \log 25 = \log\left(\frac{400}{25}\right) \] Calculating \(\frac{400}{25}\): \[ \frac{400}{25} = 16 \] So we have: \[ 2 \log(x - 4) = \log 16 \] ### Step 4: Simplify the left side We can rewrite \(2 \log(x - 4)\) as \(\log((x - 4)^2)\): \[ \log((x - 4)^2) = \log 16 \] ### Step 5: Set the arguments equal to each other Since the logarithms are equal, we can set the arguments equal: \[ (x - 4)^2 = 16 \] ### Step 6: Solve for \(x\) Taking the square root of both sides gives: \[ x - 4 = 4 \quad \text{or} \quad x - 4 = -4 \] From \(x - 4 = 4\): \[ x = 8 \] From \(x - 4 = -4\): \[ x = 0 \] However, since \(x - 4\) must be positive (as it is inside a logarithm), we discard \(x = 0\). ### Final Answer Thus, the value of \(x\) is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2p - q.

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

If = log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of 7^(l+ m + n )

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If log_2 (log_8x)=log_8(log_2x), find the value of (log_2x)^2.

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

Let log x= 2m - 3n and log y = 3n - 2m Find the value of log (x^(3) /y ^(2)) in terms of m and n.

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  2. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  3. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  4. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  5. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  6. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  7. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  8. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  9. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  10. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  11. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  12. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  13. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  14. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  15. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  16. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  17. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  18. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |

  19. If log(sqrt(27))x = 2 (2)/(3), find x.

    Text Solution

    |

  20. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |