Home
Class 9
MATHS
Solve for x, if : log(x)49 - log(x)7 + "...

Solve for x, if : `log_(x)49 - log_(x)7 + "log"_(x)(1)/(343) + 2 = 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{x}(49) - \log_{x}(7) + \log_{x}\left(\frac{1}{343}\right) + 2 = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \log_{x}(49) - \log_{x}(7) + \log_{x}\left(\frac{1}{343}\right) + 2 = 0 \] Rearranging gives: \[ \log_{x}(49) - \log_{x}(7) + \log_{x}\left(\frac{1}{343}\right) = -2 \] ### Step 2: Use logarithmic properties Using the properties of logarithms, we can combine the logs: \[ \log_{x}\left(\frac{49 \cdot \frac{1}{343}}{7}\right) = -2 \] This simplifies to: \[ \log_{x}\left(\frac{49}{7 \cdot 343}\right) = -2 \] ### Step 3: Simplify the expression inside the logarithm Calculating \( \frac{49}{7 \cdot 343} \): \[ 7 \cdot 343 = 7 \cdot 7^3 = 7^4 = 2401 \] Thus, we have: \[ \frac{49}{2401} = \frac{7^2}{7^4} = \frac{1}{7^2} = \frac{1}{49} \] So we can rewrite the equation as: \[ \log_{x}\left(\frac{1}{49}\right) = -2 \] ### Step 4: Rewrite the logarithm We know that: \[ \log_{x}\left(\frac{1}{49}\right) = \log_{x}(49^{-1}) = -\log_{x}(49) \] Thus, we have: \[ -\log_{x}(49) = -2 \] This simplifies to: \[ \log_{x}(49) = 2 \] ### Step 5: Convert the logarithmic equation to exponential form From \( \log_{x}(49) = 2 \), we can convert this to exponential form: \[ x^2 = 49 \] ### Step 6: Solve for \( x \) Taking the square root of both sides gives: \[ x = 7 \quad \text{or} \quad x = -7 \] Since the base of a logarithm must be positive, we take: \[ x = 7 \] ### Final Answer Thus, the solution for \( x \) is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

Solve for x: log_(2)x le 2/(log_(2)x-1)

Solve for x : log(x - 1) + log(x + 1) = log_(2)1 .

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve : log_(2)(4-x)=4-log_(2)(-2-x)

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

Solve : log_(1- x )(3-x)=log_(3-x)(1-x)

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

If log_(2)x + log_(2)x=7 , then =

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  2. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  3. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  4. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  5. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  6. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  7. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  8. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  9. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  10. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  11. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  12. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  13. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  14. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  15. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  16. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  17. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  18. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |

  19. If log(sqrt(27))x = 2 (2)/(3), find x.

    Text Solution

    |

  20. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |