Home
Class 9
MATHS
If a^(2) = log x, b^(3) = log y and (a^(...

If `a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c`, find c in terms of x and y.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start with the given equations and manipulate them to find \( c \) in terms of \( x \) and \( y \). ### Step 1: Write down the given equations We are given: 1. \( a^2 = \log x \) 2. \( b^3 = \log y \) 3. \( \frac{a^2}{2} - \frac{b^3}{3} = \log c \) ### Step 2: Substitute the values of \( a^2 \) and \( b^3 \) Substituting the values of \( a^2 \) and \( b^3 \) into the third equation: \[ \frac{\log x}{2} - \frac{\log y}{3} = \log c \] ### Step 3: Find a common denominator To combine the fractions on the left side, we need a common denominator. The least common multiple of 2 and 3 is 6. Thus, we can rewrite the equation as: \[ \frac{3 \log x}{6} - \frac{2 \log y}{6} = \log c \] ### Step 4: Combine the fractions Now we can combine the fractions: \[ \frac{3 \log x - 2 \log y}{6} = \log c \] ### Step 5: Multiply both sides by 6 To eliminate the fraction, multiply both sides by 6: \[ 3 \log x - 2 \log y = 6 \log c \] ### Step 6: Rewrite the equation using logarithmic properties Using the property of logarithms that states \( a \log b = \log(b^a) \), we can rewrite the left side: \[ \log(x^3) - \log(y^2) = \log(c^6) \] ### Step 7: Use the property of logarithms to combine Using the property \( \log a - \log b = \log\left(\frac{a}{b}\right) \): \[ \log\left(\frac{x^3}{y^2}\right) = \log(c^6) \] ### Step 8: Remove the logarithms Since the logarithms are equal, we can set the arguments equal to each other: \[ \frac{x^3}{y^2} = c^6 \] ### Step 9: Solve for \( c \) To find \( c \), take the sixth root of both sides: \[ c = \left(\frac{x^3}{y^2}\right)^{\frac{1}{6}} \] ### Final Result Thus, we have: \[ c = \frac{x^{\frac{1}{2}}}{y^{\frac{1}{3}}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z , express y in terms of x and z.

y=2^(1/((log)_x4) , then find x in terms of y.

If log xy^(3) = m and log x ^(3) y ^(2) = p, " find " log (x^(2) -: y) in terms of m and p.

If log_(3) y = x and log_(2) z = x , " find " 72^(x) in terms of y and z.

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If (log)_3y=xa n d(log)_2z=x , find 72^x in terms of yand zdot

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

If (log)_3y=xa n d(log)_2z=x , find 72^x in terms of ya n dzdot

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . If log_(10) P = 3a - 2b express P in terms of x and y.

Let log x= 2m - 3n and log y = 3n - 2m Find the value of log (x^(3) /y ^(2)) in terms of m and n.

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  2. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  3. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  4. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  5. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  6. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  7. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  8. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  9. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  10. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  11. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  12. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  13. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  14. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  15. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  16. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  17. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  18. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |

  19. If log(sqrt(27))x = 2 (2)/(3), find x.

    Text Solution

    |

  20. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |