Home
Class 9
MATHS
Given x = log(10)12, y = log(4)2 xx log(...

Given `x = log_(10)12, y = log_(4)2 xx log_(10)9 and z = log_(10) 0.4`, find :
(i) x - y - z
(ii) `13^(x - y - z)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to evaluate the expressions for \( x \), \( y \), and \( z \) and then compute \( x - y - z \) and \( 13^{(x - y - z)} \). ### Step 1: Calculate \( x \) Given: \[ x = \log_{10} 12 \] We can express 12 as: \[ 12 = 3 \times 4 \] Using the logarithm property \( \log_a (b \times c) = \log_a b + \log_a c \), we have: \[ x = \log_{10} 3 + \log_{10} 4 \] Next, we can express 4 as \( 2^2 \): \[ \log_{10} 4 = \log_{10} (2^2) = 2 \log_{10} 2 \] Thus, we can rewrite \( x \): \[ x = \log_{10} 3 + 2 \log_{10} 2 \] ### Step 2: Calculate \( y \) Given: \[ y = \log_{4} 2 \times \log_{10} 9 \] We can express \( \log_{4} 2 \) using the change of base formula: \[ \log_{4} 2 = \frac{\log_{10} 2}{\log_{10} 4} \] And since \( \log_{10} 4 = 2 \log_{10} 2 \): \[ \log_{4} 2 = \frac{\log_{10} 2}{2 \log_{10} 2} = \frac{1}{2} \] Now, we can express \( \log_{10} 9 \) as: \[ \log_{10} 9 = \log_{10} (3^2) = 2 \log_{10} 3 \] Thus, substituting back into \( y \): \[ y = \frac{1}{2} \times 2 \log_{10} 3 = \log_{10} 3 \] ### Step 3: Calculate \( z \) Given: \[ z = \log_{10} 0.4 \] We can express 0.4 as: \[ 0.4 = \frac{4}{10} = \frac{2^2}{10} = \log_{10} 4 - \log_{10} 10 \] Since \( \log_{10} 10 = 1 \): \[ z = \log_{10} 4 - 1 \] And we know \( \log_{10} 4 = 2 \log_{10} 2 \): \[ z = 2 \log_{10} 2 - 1 \] ### Step 4: Calculate \( x - y - z \) Now we can compute: \[ x - y - z = (\log_{10} 3 + 2 \log_{10} 2) - \log_{10} 3 - (2 \log_{10} 2 - 1) \] Distributing the negative sign: \[ = \log_{10} 3 + 2 \log_{10} 2 - \log_{10} 3 - 2 \log_{10} 2 + 1 \] The \( \log_{10} 3 \) and \( 2 \log_{10} 2 \) terms cancel out: \[ = 1 \] ### Step 5: Calculate \( 13^{(x - y - z)} \) Now we need to compute: \[ 13^{(x - y - z)} = 13^1 = 13 \] ### Final Answers (i) \( x - y - z = 1 \) (ii) \( 13^{(x - y - z)} = 13 \)
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

Given 2 log_(10) x + 1 = log_(10) 250 , find : (i) x (ii) log_(10) 2x

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

Prove that : log _ y^(x) . log _z^(y) . log _a^(z) = log _a ^(x)

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If log_(3) y = x and log_(2) z = x , " find " 72^(x) in terms of y and z.

The value of x^("log"_(x) a xx "log"_(a)y xx "log"_(y) z) is

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . Write 10 ^(a) in terms of x.

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . If log_(10) P = 3a - 2b express P in terms of x and y.

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  2. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  3. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  4. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  5. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  6. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  7. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  8. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  9. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  10. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  11. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  12. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  13. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  14. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  15. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  16. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  17. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  18. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |

  19. If log(sqrt(27))x = 2 (2)/(3), find x.

    Text Solution

    |

  20. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |