Home
Class 9
MATHS
Show that : log(a)m div log(ab)m = 1 + l...

Show that : `log_(a)m div log_(ab)m = 1 + log_(a)b`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \frac{\log_a m}{\log_{ab} m} = 1 + \log_a b, \] we will start with the left-hand side and manipulate it step by step. ### Step 1: Rewrite the logarithms using the change of base formula. Using the change of base formula, we can express both logarithms in terms of a common base (let's use base 10): \[ \log_a m = \frac{\log_{10} m}{\log_{10} a} \quad \text{and} \quad \log_{ab} m = \frac{\log_{10} m}{\log_{10} (ab)}. \] ### Step 2: Substitute the expressions into the left-hand side. Now, we can substitute these expressions into the left-hand side: \[ \frac{\log_a m}{\log_{ab} m} = \frac{\frac{\log_{10} m}{\log_{10} a}}{\frac{\log_{10} m}{\log_{10} (ab)}}. \] ### Step 3: Simplify the fraction. This can be simplified by multiplying by the reciprocal of the denominator: \[ = \frac{\log_{10} m}{\log_{10} a} \cdot \frac{\log_{10} (ab)}{\log_{10} m}. \] The \(\log_{10} m\) in the numerator and denominator cancels out: \[ = \frac{\log_{10} (ab)}{\log_{10} a}. \] ### Step 4: Expand \(\log_{10} (ab)\). Using the property of logarithms that states \(\log_{10} (ab) = \log_{10} a + \log_{10} b\), we can rewrite the expression: \[ = \frac{\log_{10} a + \log_{10} b}{\log_{10} a}. \] ### Step 5: Separate the terms. Now, we can separate the terms in the fraction: \[ = \frac{\log_{10} a}{\log_{10} a} + \frac{\log_{10} b}{\log_{10} a} = 1 + \frac{\log_{10} b}{\log_{10} a}. \] ### Step 6: Rewrite \(\frac{\log_{10} b}{\log_{10} a}\) as \(\log_a b\). By the change of base formula, we know that: \[ \frac{\log_{10} b}{\log_{10} a} = \log_a b. \] ### Final Result: Thus, we have: \[ \frac{\log_a m}{\log_{ab} m} = 1 + \log_a b. \] This shows that the left-hand side equals the right-hand side, confirming the identity.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

Show that: |log_ba+log_ab|ge2

Show that log_(3) 9+ log_(3) 3= log_(5) 125

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

If ("log"_(a)x)/("log"_(ab)x) = 4 + k + "log"_(a)b, "then" k=

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

If a^(2) + b^(2) = 23ab , show that : "log" (a+b)/(5) = (1)/(2) (log a + log b) .

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  2. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  3. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  4. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  5. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  6. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  7. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  8. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  9. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  10. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  11. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  12. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  13. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  14. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  15. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  16. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  17. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  18. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |

  19. If log(sqrt(27))x = 2 (2)/(3), find x.

    Text Solution

    |

  20. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |