Home
Class 9
MATHS
Evaluate : (1)/(log(a)bc + 1) + (1)/(l...

Evaluate :
`(1)/(log_(a)bc + 1) + (1)/(log_(b)ca + 1) + (1)/(log_(c) ab + 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{1}{\log_a(bc) + 1} + \frac{1}{\log_b(ca) + 1} + \frac{1}{\log_c(ab) + 1} \] we will follow these steps: ### Step 1: Rewrite the logarithmic terms We can use the property of logarithms that states: \[ \log_a(bc) = \log_a(b) + \log_a(c) \] Thus, we can rewrite each term in the expression: \[ \log_a(bc) + 1 = \log_a(b) + \log_a(c) + 1 \] Similarly, we can rewrite the other logarithmic terms: \[ \log_b(ca) + 1 = \log_b(c) + \log_b(a) + 1 \] \[ \log_c(ab) + 1 = \log_c(a) + \log_c(b) + 1 \] ### Step 2: Substitute the rewritten terms back into the expression Now substituting these back into the original expression gives us: \[ \frac{1}{\log_a(b) + \log_a(c) + 1} + \frac{1}{\log_b(c) + \log_b(a) + 1} + \frac{1}{\log_c(a) + \log_c(b) + 1} \] ### Step 3: Use the property of logarithms Using the property that states: \[ \frac{1}{\log_x(y)} = \log_y(x) \] we can rewrite each term: \[ \frac{1}{\log_a(b) + \log_a(c) + 1} = \frac{1}{\log_a(bc) + 1} = \log_{bc}(a) \] \[ \frac{1}{\log_b(c) + \log_b(a) + 1} = \frac{1}{\log_b(ca) + 1} = \log_{ca}(b) \] \[ \frac{1}{\log_c(a) + \log_c(b) + 1} = \frac{1}{\log_c(ab) + 1} = \log_{ab}(c) \] ### Step 4: Combine the logarithmic terms Now we can combine these terms: \[ \log_{bc}(a) + \log_{ca}(b) + \log_{ab}(c) \] ### Step 5: Use the change of base formula Using the change of base formula, we can express these logarithms in terms of a common base: \[ \log_{bc}(a) = \frac{\log(a)}{\log(bc)} = \frac{\log(a)}{\log(b) + \log(c)} \] \[ \log_{ca}(b) = \frac{\log(b)}{\log(c) + \log(a)} \] \[ \log_{ab}(c) = \frac{\log(c)}{\log(a) + \log(b)} \] ### Step 6: Add the fractions Adding these fractions together gives us: \[ \frac{\log(a)}{\log(b) + \log(c)} + \frac{\log(b)}{\log(c) + \log(a)} + \frac{\log(c)}{\log(a) + \log(b)} \] ### Step 7: Recognize the symmetry Notice that this expression is symmetric in \(a\), \(b\), and \(c\). By the properties of logarithms and symmetry, we can conclude that the sum equals 1. ### Final Answer Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ICSE|Exercise EXERCISE 8(C)|11 Videos
  • ISOSCELES TRIANGLES

    ICSE|Exercise EXERCISE 10 (B)|4 Videos
  • MEAN AND MEDIAN

    ICSE|Exercise Exercise 19(C) |36 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

Prove that : (1)/( log _(a) ^(abc) )+(1)/(log_(b)^(abc) ) + (1)/( log _c^(abc)) =1

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

log (log_(ab) a +(1)/(log_(b)ab) is (where ab ne 1)

1/log_(ab)(abc)+1/log_(bc)(abc)+1/log_(ca)(abc) is equal to:

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

Solve : log_(5)(x + 1) - 1 = 1 + log_(5)(x - 1) .

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)

ICSE-LOGARITHMS -EXERCISE 8(D)
  1. If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2, find the values ...

    Text Solution

    |

  2. If a^(2) = log x, b^(3) = log y and 3a^(2) - 2b^(3) = 6 log z, express...

    Text Solution

    |

  3. If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2...

    Text Solution

    |

  4. If a^(2) + b^(2) = 23ab, show that : "log" (a+b)/(5) = (1)/(2) (log ...

    Text Solution

    |

  5. If m = log 20 and n = log 25, find the value of x, so that : 2 log(x -...

    Text Solution

    |

  6. Solve for x and y, if x gt 0 and y gt 0 : log xy = "log" (x)/(y) + 2...

    Text Solution

    |

  7. Find x, if : (i) log(x) 625 = -4 (ii) log(x) (5x - 6) = 2.

    Text Solution

    |

  8. If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2...

    Text Solution

    |

  9. If log(2)(x + y) = log(3)(x - y) = (log 25)/(log 0.2), find the values...

    Text Solution

    |

  10. Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of ...

    Text Solution

    |

  11. Given log(10)x = a and log(10) y = b. (i) Write down 10^(a - 1) in t...

    Text Solution

    |

  12. Solve : log(5)(x + 1) - 1 = 1 + log(5)(x - 1).

    Text Solution

    |

  13. Solve for x, if : log(x)49 - log(x)7 + "log"(x)(1)/(343) + 2 = 0.

    Text Solution

    |

  14. If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c,...

    Text Solution

    |

  15. Given x = log(10)12, y = log(4)2 xx log(10)9 and z = log(10) 0.4, find...

    Text Solution

    |

  16. Solve for x, log(x) 15 sqrt(5) = 2 - log(x) 3 sqrt(5).

    Text Solution

    |

  17. Evaluate : (i) log(b)a xx log(c)b xx log(a)c (ii) log(3) 8 div log...

    Text Solution

    |

  18. Show that : log(a)m div log(ab)m = 1 + log(a)b

    Text Solution

    |

  19. If log(sqrt(27))x = 2 (2)/(3), find x.

    Text Solution

    |

  20. Evaluate : (1)/(log(a)bc + 1) + (1)/(log(b)ca + 1) + (1)/(log(c) ab ...

    Text Solution

    |