Home
Class 9
MATHS
Given : sin A=(3)/5 , find : tan A...

Given : `sin A=(3)/5 ` , find :
tan A

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \tan A \) given that \( \sin A = \frac{3}{5} \), we can follow these steps: ### Step 1: Understand the relationship of sine in a right triangle We know that: \[ \sin A = \frac{\text{Perpendicular}}{\text{Hypotenuse}} \] From the given information, we have: \[ \sin A = \frac{3}{5} \] This tells us that the length of the perpendicular side (opposite to angle A) is 3 and the length of the hypotenuse is 5. ### Step 2: Draw a right triangle Draw a right triangle \( ABC \) where: - \( \angle A \) is one of the angles, - \( \angle B \) is the right angle (90 degrees), - The side opposite \( \angle A \) (perpendicular) is 3, - The hypotenuse is 5. ### Step 3: Use the Pythagorean theorem to find the base According to the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Perpendicular}^2 + \text{Base}^2 \] We can rearrange this to find the base: \[ \text{Base}^2 = \text{Hypotenuse}^2 - \text{Perpendicular}^2 \] Substituting the known values: \[ \text{Base}^2 = 5^2 - 3^2 \] Calculating the squares: \[ \text{Base}^2 = 25 - 9 \] \[ \text{Base}^2 = 16 \] Taking the square root to find the base: \[ \text{Base} = \sqrt{16} = 4 \] ### Step 4: Calculate \( \tan A \) Now that we have both the perpendicular and the base, we can find \( \tan A \): \[ \tan A = \frac{\text{Perpendicular}}{\text{Base}} = \frac{3}{4} \] ### Final Answer Thus, the value of \( \tan A \) is: \[ \tan A = \frac{3}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIANGLES

    ICSE|Exercise 4 MARKS QUESTIONS |24 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Given : sin A=(3)/5 , find : cos A

Given 13 sin A = 12 , find : sec A - tan A

Given that sin A = 3/5 and that A is an acute anlge, find without using talbes, the values of sin 2 A , cos 2 A and tan 2A. Hence find the value of sin 4A.

Given 13 sin A = 12 , find : (1)/(cos^2A) - tan^2A

Given that tan A = (1)/(5). find the values of tan 2 A, tan 4A and tan (45 ^(@) - 4A).

If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

Given : q tan A = p, find the value of : (p sin A -q cos A)/(p sin A+q cos A)

Find the values of sin 2 theta, cos 2 theta, and tan 2 theta, given : (i) sin theta = (3)/(5) , theta in Quadrant I. (ii) sin theta = 3/5 , theta in Quadrant II. (iii) sin theta = - (1)/(2), theta in Quadrant IV. (iv) tan theta =- (1)/(5) , theta in Quadrant II.

Prove that (sin 7A - sin 5A)/(cos 5 A + cos 7A ) = tan A.

Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (alpha + beta), given sin alpha = (3)/(5) , cos beta = (5)/(13), alpha and beta in Quadrant I.

ICSE-TRIGONOMETRICAL RATIOS -EXERCISE 22(A)
  1. From the following figure , find the values of : sec^2B- tan^2B

    Text Solution

    |

  2. From the following figure , find the values of : sin^2C+cos^2C

    Text Solution

    |

  3. Given : sin A=(3)/5 , find : tan A

    Text Solution

    |

  4. Given : sin A=(3)/5 , find : cos A

    Text Solution

    |

  5. From the following figure , find the values of : sin A

    Text Solution

    |

  6. From the following figure , find the values of : sec A

    Text Solution

    |

  7. From the following figure , find the values of : cos^2A+sin^2A

    Text Solution

    |

  8. Given : cos A=5/13 evaluate : (sinA-cotA)/(2 tanA)

    Text Solution

    |

  9. Given : cos A=5/13 evaluate : cotA+1/(cosA)

    Text Solution

    |

  10. Given : sec A= (29)/21 , evaluate : sin A-1/(tanA)

    Text Solution

    |

  11. Given : tan A=4/3 , find : ("cosec"A)/(cot A- secA)

    Text Solution

    |

  12. Given : 4 cot A = 3 , find : sinA

    Text Solution

    |

  13. Given : 4 cot A = 3 , find : sec A

    Text Solution

    |

  14. Given : 4 cot A = 3 , find : "cosec"^2A - cot^2A

    Text Solution

    |

  15. Given : cos A = 0.6 , find all other trigono- metrical ratios for angl...

    Text Solution

    |

  16. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  17. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  18. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  19. Given : sin theta = p/q , find cos theta + sin theta in terms of p an...

    Text Solution

    |

  20. If cos A=1/2 and sin B =1/sqrt2 , find the value of : (tanA-tanB)/(1+t...

    Text Solution

    |