Home
Class 9
MATHS
Given : cos A=5/13 evaluate : (sinA-...

Given : `cos A=5/13` evaluate :
`(sinA-cotA)/(2 tanA)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given that \( \cos A = \frac{5}{13} \), we need to evaluate the expression \( \frac{\sin A - \cot A}{2 \tan A} \). ### Step 1: Determine the sides of the triangle Since \( \cos A = \frac{5}{13} \), we can interpret this in a right triangle where: - The base (adjacent side) is 5, - The hypotenuse is 13. Using the Pythagorean theorem, we can find the length of the perpendicular (opposite side): \[ \text{Hypotenuse}^2 = \text{Perpendicular}^2 + \text{Base}^2 \] \[ 13^2 = \text{Perpendicular}^2 + 5^2 \] \[ 169 = \text{Perpendicular}^2 + 25 \] \[ \text{Perpendicular}^2 = 169 - 25 = 144 \] \[ \text{Perpendicular} = \sqrt{144} = 12 \] ### Step 2: Calculate \( \sin A \), \( \cot A \), and \( \tan A \) Now we can find: - \( \sin A = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{12}{13} \) - \( \cot A = \frac{\text{Base}}{\text{Perpendicular}} = \frac{5}{12} \) - \( \tan A = \frac{\text{Perpendicular}}{\text{Base}} = \frac{12}{5} \) ### Step 3: Substitute into the expression Now substitute these values into the expression \( \frac{\sin A - \cot A}{2 \tan A} \): \[ \frac{\sin A - \cot A}{2 \tan A} = \frac{\frac{12}{13} - \frac{5}{12}}{2 \cdot \frac{12}{5}} \] ### Step 4: Simplify the numerator To simplify the numerator \( \frac{12}{13} - \frac{5}{12} \), we need a common denominator: - The common denominator is \( 12 \times 13 = 156 \). Now convert each fraction: \[ \frac{12}{13} = \frac{12 \times 12}{13 \times 12} = \frac{144}{156} \] \[ \frac{5}{12} = \frac{5 \times 13}{12 \times 13} = \frac{65}{156} \] Now subtract: \[ \frac{144}{156} - \frac{65}{156} = \frac{144 - 65}{156} = \frac{79}{156} \] ### Step 5: Simplify the denominator Now calculate the denominator \( 2 \tan A \): \[ 2 \tan A = 2 \cdot \frac{12}{5} = \frac{24}{5} \] ### Step 6: Combine the results Now we have: \[ \frac{\frac{79}{156}}{\frac{24}{5}} = \frac{79}{156} \cdot \frac{5}{24} = \frac{79 \cdot 5}{156 \cdot 24} = \frac{395}{3744} \] ### Final Answer Thus, the value of \( \frac{\sin A - \cot A}{2 \tan A} \) is: \[ \frac{395}{3744} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIANGLES

    ICSE|Exercise 4 MARKS QUESTIONS |24 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Given : cos A=5/13 evaluate : cotA+1/(cosA)

Given : cos A = (5)/(13) Evaluate : (i) (sin A - cot A)/(2 tan A) (ii) cot A + (1)/(cos A)

Given A is an acute angle and 13 sin A = 5 , evaluate : ( 5 sin A - 2 cos A)/( tan A)

Given 5 cos A - 12 sin A = 0 , evaluate : (sinA+cosA)/(2 cosA-sinA)

Given that 16cotA=12 ; find the value of (sinA+cosA)/(sinA-cosA) .

If A is in the fourth quadrant and cos A=(5)/(13) , find the value of (13 sin A+5 secA)/(5tanA+6" cosec"A) .

If cosA=7/(25) , find the value of tanA+cotA .

If tanA=5/(12) , find the value of (sinA+cosA)secA .

If sinA=-4/5 and pi lt A lt (3pi)/2 , find the value of (cosecA+cotA)/(secA-tanA)

Prove that : (sinA-cosA)(cotA +tanA)=secA-"cosec"A

ICSE-TRIGONOMETRICAL RATIOS -EXERCISE 22(A)
  1. From the following figure , find the values of : sec A

    Text Solution

    |

  2. From the following figure , find the values of : cos^2A+sin^2A

    Text Solution

    |

  3. Given : cos A=5/13 evaluate : (sinA-cotA)/(2 tanA)

    Text Solution

    |

  4. Given : cos A=5/13 evaluate : cotA+1/(cosA)

    Text Solution

    |

  5. Given : sec A= (29)/21 , evaluate : sin A-1/(tanA)

    Text Solution

    |

  6. Given : tan A=4/3 , find : ("cosec"A)/(cot A- secA)

    Text Solution

    |

  7. Given : 4 cot A = 3 , find : sinA

    Text Solution

    |

  8. Given : 4 cot A = 3 , find : sec A

    Text Solution

    |

  9. Given : 4 cot A = 3 , find : "cosec"^2A - cot^2A

    Text Solution

    |

  10. Given : cos A = 0.6 , find all other trigono- metrical ratios for angl...

    Text Solution

    |

  11. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  12. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  13. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  14. Given : sin theta = p/q , find cos theta + sin theta in terms of p an...

    Text Solution

    |

  15. If cos A=1/2 and sin B =1/sqrt2 , find the value of : (tanA-tanB)/(1+t...

    Text Solution

    |

  16. If 5 cot theta =12 , find the value of : "cosec" theta + sec theta

    Text Solution

    |

  17. If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

    Text Solution

    |

  18. If "cosec" theta = sqrt5 , find the value of : 2-sin^2theta - cos^2 ...

    Text Solution

    |

  19. If "cosec" theta = sqrt5 , find the value of : 2+1/(sin^2theta)-(cos...

    Text Solution

    |

  20. If sec A = sqrt2 , find the value of : (3 cos^2 A+5 tan^2A)/(4 tan^2...

    Text Solution

    |