Home
Class 9
MATHS
Given : 4 cot A = 3 , find : sec A...

Given : ` 4 cot A = 3 ` , find :
sec A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Start with the given equation We are given that: \[ 4 \cot A = 3 \] ### Step 2: Solve for cot A To find cot A, we will divide both sides of the equation by 4: \[ \cot A = \frac{3}{4} \] ### Step 3: Understand cotangent in terms of a right triangle Recall that: \[ \cot A = \frac{\text{base}}{\text{perpendicular}} \] From the equation \( \cot A = \frac{3}{4} \), we can interpret this as: - Base = 3 - Perpendicular = 4 ### Step 4: Use the Pythagorean theorem to find the hypotenuse We can find the hypotenuse (h) using the Pythagorean theorem: \[ h = \sqrt{(\text{base})^2 + (\text{perpendicular})^2} \] Substituting the values: \[ h = \sqrt{3^2 + 4^2} \] \[ h = \sqrt{9 + 16} \] \[ h = \sqrt{25} \] \[ h = 5 \] ### Step 5: Find secant A Secant (sec A) is defined as: \[ \sec A = \frac{\text{hypotenuse}}{\text{base}} \] Substituting the values we have: \[ \sec A = \frac{5}{3} \] ### Final Answer Thus, the value of sec A is: \[ \sec A = \frac{5}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIANGLES

    ICSE|Exercise 4 MARKS QUESTIONS |24 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Given : 4 cot A = 3 , find : sinA

Given : 4 cot A = 3 , find : "cosec"^2A - cot^2A

Given : tan A=4/3 , find : ("cosec"A)/(cot A- secA)

Given 13 sin A = 12 , find : sec A - tan A

Given 15cotA=8 , find sin A and sec A.

If cot ^(2) A - 3 =0 find : cos 3A

Given : 4 sintheta = 3 cos theta , find the value of: cot^2 theta - "cosec"^2 theta

Prove the identity : tan A + cot A = sec A . cosec A

If 3 sin A = 4 cos A , find the value of : tan^2A-sec^2A

Prove that : (sec A - tan A)/ (cosec A + cot A) = (cosec A - cot A)/ (sec A + tan A)

ICSE-TRIGONOMETRICAL RATIOS -EXERCISE 22(A)
  1. Given : sec A= (29)/21 , evaluate : sin A-1/(tanA)

    Text Solution

    |

  2. Given : tan A=4/3 , find : ("cosec"A)/(cot A- secA)

    Text Solution

    |

  3. Given : 4 cot A = 3 , find : sinA

    Text Solution

    |

  4. Given : 4 cot A = 3 , find : sec A

    Text Solution

    |

  5. Given : 4 cot A = 3 , find : "cosec"^2A - cot^2A

    Text Solution

    |

  6. Given : cos A = 0.6 , find all other trigono- metrical ratios for angl...

    Text Solution

    |

  7. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  8. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  9. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  10. Given : sin theta = p/q , find cos theta + sin theta in terms of p an...

    Text Solution

    |

  11. If cos A=1/2 and sin B =1/sqrt2 , find the value of : (tanA-tanB)/(1+t...

    Text Solution

    |

  12. If 5 cot theta =12 , find the value of : "cosec" theta + sec theta

    Text Solution

    |

  13. If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

    Text Solution

    |

  14. If "cosec" theta = sqrt5 , find the value of : 2-sin^2theta - cos^2 ...

    Text Solution

    |

  15. If "cosec" theta = sqrt5 , find the value of : 2+1/(sin^2theta)-(cos...

    Text Solution

    |

  16. If sec A = sqrt2 , find the value of : (3 cos^2 A+5 tan^2A)/(4 tan^2...

    Text Solution

    |

  17. If cot theta = 1 , find the value of : 5 tan^2 theta + 2 sin^2 theta...

    Text Solution

    |

  18. In the following figure , AD bot BC, AC = 26, CD = 10 , BC = 42, ang...

    Text Solution

    |

  19. In the following figure , AD bot BC, AC = 26, CD = 10 , BC = 42, ang...

    Text Solution

    |

  20. In the following figure , AD bot BC, AC = 26, CD = 10 , BC = 42, ang...

    Text Solution

    |