Home
Class 9
MATHS
If cos A=1/2 and sin B =1/sqrt2 , find t...

If `cos A=1/2 and sin B =1/sqrt2` , find the value of : `(tanA-tanB)/(1+tanAtanB)` : Here angles A and B from different right triangle .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((\tan A - \tan B) / (1 + \tan A \tan B)\) given that \(\cos A = \frac{1}{2}\) and \(\sin B = \frac{1}{\sqrt{2}}\). ### Step-by-Step Solution: 1. **Find \(\tan A\)**: - We know that \(\tan A = \frac{\sin A}{\cos A}\). - First, we need to find \(\sin A\) using the identity \(\sin^2 A + \cos^2 A = 1\). - Given \(\cos A = \frac{1}{2}\): \[ \sin^2 A = 1 - \cos^2 A = 1 - \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4} \] \[ \sin A = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] - Now, calculate \(\tan A\): \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3} \] 2. **Find \(\tan B\)**: - We know that \(\tan B = \frac{\sin B}{\cos B}\). - First, we need to find \(\cos B\) using the identity \(\sin^2 B + \cos^2 B = 1\). - Given \(\sin B = \frac{1}{\sqrt{2}}\): \[ \cos^2 B = 1 - \sin^2 B = 1 - \left(\frac{1}{\sqrt{2}}\right)^2 = 1 - \frac{1}{2} = \frac{1}{2} \] \[ \cos B = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \] - Now, calculate \(\tan B\): \[ \tan B = \frac{\sin B}{\cos B} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1 \] 3. **Substitute \(\tan A\) and \(\tan B\) into the expression**: - We need to find: \[ \frac{\tan A - \tan B}{1 + \tan A \tan B} = \frac{\sqrt{3} - 1}{1 + \sqrt{3} \cdot 1} \] \[ = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \] 4. **Rationalize the denominator**: - Multiply the numerator and the denominator by the conjugate of the denominator: \[ = \frac{(\sqrt{3} - 1)(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} \] - Calculate the numerator: \[ = (\sqrt{3} - 1)(1 - \sqrt{3}) = \sqrt{3} - 3 - 1 + \sqrt{3} = 2\sqrt{3} - 4 \] - Calculate the denominator: \[ = 1^2 - (\sqrt{3})^2 = 1 - 3 = -2 \] - Therefore, we have: \[ = \frac{2\sqrt{3} - 4}{-2} = -\left(\sqrt{3} - 2\right) = 2 - \sqrt{3} \] ### Final Answer: The value of \(\frac{\tan A - \tan B}{1 + \tan A \tan B}\) is \(2 - \sqrt{3}\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIANGLES

    ICSE|Exercise 4 MARKS QUESTIONS |24 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

If sin A=sqrt3/2 and cos B = sqrt3/2 , find the value of : (tanA-tanB)/(1+tanAtanB)

If cos A = 0.5 and cos B = (1)/(sqrt2) , find the value of : (tan A - tan B)/( 1+ tan A tan B)

If tanA=m/(m-1) and tanB=1/(2m-1) , find the value of tan(A-B) .

If 2cos(A+B)=2sin(A-B)=1 , find the values of A and B.

If 2cos(A+B)=2sin(A-B)=1 , find the values of A and B.

If 2 cos(A + B) = 2 sin(A - B) = 1 , find the values of A and B.

If tan (A-B) = (1)/(sqrt3) and sin A = (1)/(sqrt2) find the value of B.

If 2 cos (A-B) = 2 sin ( A+ B) = sqrt3 find the value of acute angles A and B .

If sin (A+B) =1 and cos (A-B) = (sqrt(3))/(2) , then find the values of A and B.

If cos(A-B) = 1/2 and sin(A+B) = 1/2 , find the smallest positive values of A and B.

ICSE-TRIGONOMETRICAL RATIOS -EXERCISE 22(A)
  1. Given : sec A= (29)/21 , evaluate : sin A-1/(tanA)

    Text Solution

    |

  2. Given : tan A=4/3 , find : ("cosec"A)/(cot A- secA)

    Text Solution

    |

  3. Given : 4 cot A = 3 , find : sinA

    Text Solution

    |

  4. Given : 4 cot A = 3 , find : sec A

    Text Solution

    |

  5. Given : 4 cot A = 3 , find : "cosec"^2A - cot^2A

    Text Solution

    |

  6. Given : cos A = 0.6 , find all other trigono- metrical ratios for angl...

    Text Solution

    |

  7. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  8. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  9. In a right - angled triangle , it is given that A is an acute angle an...

    Text Solution

    |

  10. Given : sin theta = p/q , find cos theta + sin theta in terms of p an...

    Text Solution

    |

  11. If cos A=1/2 and sin B =1/sqrt2 , find the value of : (tanA-tanB)/(1+t...

    Text Solution

    |

  12. If 5 cot theta =12 , find the value of : "cosec" theta + sec theta

    Text Solution

    |

  13. If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

    Text Solution

    |

  14. If "cosec" theta = sqrt5 , find the value of : 2-sin^2theta - cos^2 ...

    Text Solution

    |

  15. If "cosec" theta = sqrt5 , find the value of : 2+1/(sin^2theta)-(cos...

    Text Solution

    |

  16. If sec A = sqrt2 , find the value of : (3 cos^2 A+5 tan^2A)/(4 tan^2...

    Text Solution

    |

  17. If cot theta = 1 , find the value of : 5 tan^2 theta + 2 sin^2 theta...

    Text Solution

    |

  18. In the following figure , AD bot BC, AC = 26, CD = 10 , BC = 42, ang...

    Text Solution

    |

  19. In the following figure , AD bot BC, AC = 26, CD = 10 , BC = 42, ang...

    Text Solution

    |

  20. In the following figure , AD bot BC, AC = 26, CD = 10 , BC = 42, ang...

    Text Solution

    |