Home
Class 9
MATHS
In triangle ABC, angleB = 90^@ and tan ...

In triangle ABC, `angleB = 90^@` and tan A = 0.75 If AC = 30 cm, find the lengths of AB and BC.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given information and apply trigonometric ratios and the Pythagorean theorem. ### Step 1: Understand the triangle and given information We have a right triangle ABC where angle B = 90°. We are given: - tan A = 0.75 - AC = 30 cm ### Step 2: Set up the relationship using the tangent function In a right triangle, the tangent of an angle is defined as the ratio of the length of the opposite side to the length of the adjacent side. For angle A: \[ \tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AB} \] Given that \( \tan A = 0.75 \), we can express this as: \[ \frac{BC}{AB} = 0.75 \] This can be rewritten as: \[ BC = 0.75 \times AB \] ### Step 3: Express BC in terms of AB To make calculations easier, we can express 0.75 as a fraction: \[ 0.75 = \frac{3}{4} \] Thus: \[ BC = \frac{3}{4} AB \] ### Step 4: Apply the Pythagorean theorem According to the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] Substituting \( AC = 30 \) cm: \[ 30^2 = AB^2 + BC^2 \] This simplifies to: \[ 900 = AB^2 + BC^2 \] ### Step 5: Substitute BC in the Pythagorean theorem Now substitute \( BC = \frac{3}{4} AB \) into the equation: \[ 900 = AB^2 + \left(\frac{3}{4} AB\right)^2 \] Calculating \( \left(\frac{3}{4} AB\right)^2 \): \[ \left(\frac{3}{4} AB\right)^2 = \frac{9}{16} AB^2 \] So the equation becomes: \[ 900 = AB^2 + \frac{9}{16} AB^2 \] ### Step 6: Combine like terms Combine the terms on the right side: \[ 900 = \left(1 + \frac{9}{16}\right) AB^2 \] Convert 1 to a fraction: \[ 1 = \frac{16}{16} \] Thus: \[ 900 = \left(\frac{16}{16} + \frac{9}{16}\right) AB^2 \] \[ 900 = \frac{25}{16} AB^2 \] ### Step 7: Solve for AB To isolate \( AB^2 \), multiply both sides by \( \frac{16}{25} \): \[ AB^2 = 900 \times \frac{16}{25} \] Calculating the right side: \[ AB^2 = \frac{14400}{25} = 576 \] Taking the square root: \[ AB = \sqrt{576} = 24 \text{ cm} \] ### Step 8: Find BC using AB Now that we have \( AB \), we can find \( BC \): \[ BC = \frac{3}{4} AB = \frac{3}{4} \times 24 = 18 \text{ cm} \] ### Final Answer - Length of AB = 24 cm - Length of BC = 18 cm
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(A)|47 Videos
  • TRIANGLES

    ICSE|Exercise 4 MARKS QUESTIONS |24 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : cos A

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : sin A

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : tan C .

In a triangle ABC, right-angled at B, side BC = 20 cm and angle A= 30°. Find the length of AB.

In triangle ABC , angleABC = 90^@ , angle CAB = x^@ , tan x^@ = 3/4 and BC = 15 cm . Find the measures of AB and AC.

ABC is an isosceles triangle with AB = AC = 2a and BC = a . If AD bot BC, find the length of AD .

Delta ABC is right-angled at C. If AC = 5 cm and BC = 12 cm find the length of AB.

In Delta ABC , angle A is 120^(@), BC + CA = 20, and AB + BC = 21 Find the length of the side BC

In Delta ABC, /_B = 90^@ and BD _|_ AC . If AC = 9 cm and AB = 7 cm, find AD.

In the given figure, a circle inscribed in a triangle ABC, touches the sides AB, BC and AC at points D, E and F respectively. If AB= 12 cm, BC= 8 cm and AC = 10 cm, find the lengths of AD, BE and CF.

ICSE-TRIGONOMETRICAL RATIOS -EXERCISE 22(B)
  1. If 3 cos A = 4 sin A, find the value of : cos A

    Text Solution

    |

  2. If 3 cos A = 4 sin A, find the value of : 3 - cot^2A+ "cosec"^2A

    Text Solution

    |

  3. In triangle ABC, angleB = 90^@ and tan A = 0.75 If AC = 30 cm, find t...

    Text Solution

    |

  4. In rhombus ABCD, diagonals AC and BD intersect each other at point O. ...

    Text Solution

    |

  5. In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : cos B

    Text Solution

    |

  6. In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : sin C

    Text Solution

    |

  7. In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : tan^2B - sec...

    Text Solution

    |

  8. In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm an...

    Text Solution

    |

  9. Given : q tan A = p, find the value of : (p sin A -q cos A)/(p sin A...

    Text Solution

    |

  10. If sin A = cos A, find the value of 2tan^2 A - 2 sec^(2)A + 5.

    Text Solution

    |

  11. In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1....

    Text Solution

    |

  12. If 2 sin x = sqrt3 , evaluate . 4 sin^3 x- 3 sinx.

    Text Solution

    |

  13. If 2 sin x = sqrt3 , evaluate . 3 cos x - 4 cos^3x.

    Text Solution

    |

  14. If sin A=sqrt3/2 and cos B = sqrt3/2 , find the value of : (tanA-tanB)...

    Text Solution

    |

  15. Use the informations given in the following figure to evaluate : (10)/...

    Text Solution

    |

  16. If sec A=sqrt2, find : (3 cot^2A+2sin^2A)/(tan^2A-cos^2A)

    Text Solution

    |

  17. If 5 cos theta = 3 , evaluate : ("cosec" theta-cottheta)/("cosec" thet...

    Text Solution

    |

  18. If cosec A + sin A = 5(1)/5 , find the value of "cosec"^2 A+ sin^2A.

    Text Solution

    |

  19. If 5 cos theta = 6 , sin theta , evalutate : tan theta

    Text Solution

    |

  20. If 5 cos theta = 6 , sin theta , evalutate : (12 sin theta - 3cos th...

    Text Solution

    |