Home
Class 9
MATHS
Given : q tan A = p, find the value of :...

Given : q tan A = p, find the value of :
`(p sin A -q cos A)/(p sin A+q cos A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{p \sin A - q \cos A}{p \sin A + q \cos A} \] Given that \( q \tan A = p \), we can express \(\tan A\) in terms of \(p\) and \(q\): \[ \tan A = \frac{p}{q} \] ### Step 1: Find \(\sin A\) and \(\cos A\) Using the identity \(\tan A = \frac{\sin A}{\cos A}\), we can write: \[ \frac{\sin A}{\cos A} = \frac{p}{q} \] From this, we can express \(\sin A\) in terms of \(\cos A\): \[ \sin A = \frac{p}{q} \cos A \] ### Step 2: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 A + \cos^2 A = 1 \] Substituting \(\sin A\) from the previous step: \[ \left(\frac{p}{q} \cos A\right)^2 + \cos^2 A = 1 \] This simplifies to: \[ \frac{p^2}{q^2} \cos^2 A + \cos^2 A = 1 \] Factoring out \(\cos^2 A\): \[ \cos^2 A \left(\frac{p^2}{q^2} + 1\right) = 1 \] ### Step 3: Solve for \(\cos^2 A\) This gives us: \[ \cos^2 A = \frac{1}{\frac{p^2}{q^2} + 1} = \frac{1}{\frac{p^2 + q^2}{q^2}} = \frac{q^2}{p^2 + q^2} \] Taking the square root, we find: \[ \cos A = \frac{q}{\sqrt{p^2 + q^2}} \] ### Step 4: Find \(\sin A\) Now substituting back to find \(\sin A\): \[ \sin A = \frac{p}{q} \cos A = \frac{p}{q} \cdot \frac{q}{\sqrt{p^2 + q^2}} = \frac{p}{\sqrt{p^2 + q^2}} \] ### Step 5: Substitute \(\sin A\) and \(\cos A\) into the Expression Now we substitute \(\sin A\) and \(\cos A\) into the original expression: \[ \frac{p \cdot \frac{p}{\sqrt{p^2 + q^2}} - q \cdot \frac{q}{\sqrt{p^2 + q^2}}}{p \cdot \frac{p}{\sqrt{p^2 + q^2}} + q \cdot \frac{q}{\sqrt{p^2 + q^2}}} \] This simplifies to: \[ \frac{\frac{p^2 - q^2}{\sqrt{p^2 + q^2}}}{\frac{p^2 + q^2}{\sqrt{p^2 + q^2}}} \] ### Step 6: Simplify the Expression The \(\sqrt{p^2 + q^2}\) cancels out: \[ \frac{p^2 - q^2}{p^2 + q^2} \] Thus, the final answer is: \[ \frac{p^2 - q^2}{p^2 + q^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(A)|47 Videos
  • TRIANGLES

    ICSE|Exercise 4 MARKS QUESTIONS |24 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

If tantheta =p/q , then the value of (p sintheta-q costheta)/(p sintheta+q costheta) is

If tan theta = p/q then (p sin theta - q cos theta)/(p sin theta + q cos theta)=

The value of ((1+sin q))/(cos q) is equal to

Find the truth values of (i) ~ p to q " " (ii) ~ ( p to q)

Given : sin theta = p/q , find cos theta + sin theta in terms of p and q.

If p=(sinA)/(sinB) and q=(cos A)/(cos B)

Given that q^2-p r ,0,\ p >0, then the value of |p q p x+q y q r q x+r y p x+q y q x+r y0| is- a. zero b. positive c. negative \ d. q^2+p r

Solve : cos p theta = sin q theta.

If tan 6 theta=p/q find the value of (1)/(2)(p cosec 2 theta-q sec 2 theta) terms of p and q.

Find the truth values of (a) ~p to (q to p) " " (b) ( p to q) to (p^^q)

ICSE-TRIGONOMETRICAL RATIOS -EXERCISE 22(B)
  1. If 3 cos A = 4 sin A, find the value of : cos A

    Text Solution

    |

  2. If 3 cos A = 4 sin A, find the value of : 3 - cot^2A+ "cosec"^2A

    Text Solution

    |

  3. In triangle ABC, angleB = 90^@ and tan A = 0.75 If AC = 30 cm, find t...

    Text Solution

    |

  4. In rhombus ABCD, diagonals AC and BD intersect each other at point O. ...

    Text Solution

    |

  5. In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : cos B

    Text Solution

    |

  6. In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : sin C

    Text Solution

    |

  7. In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : tan^2B - sec...

    Text Solution

    |

  8. In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm an...

    Text Solution

    |

  9. Given : q tan A = p, find the value of : (p sin A -q cos A)/(p sin A...

    Text Solution

    |

  10. If sin A = cos A, find the value of 2tan^2 A - 2 sec^(2)A + 5.

    Text Solution

    |

  11. In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1....

    Text Solution

    |

  12. If 2 sin x = sqrt3 , evaluate . 4 sin^3 x- 3 sinx.

    Text Solution

    |

  13. If 2 sin x = sqrt3 , evaluate . 3 cos x - 4 cos^3x.

    Text Solution

    |

  14. If sin A=sqrt3/2 and cos B = sqrt3/2 , find the value of : (tanA-tanB)...

    Text Solution

    |

  15. Use the informations given in the following figure to evaluate : (10)/...

    Text Solution

    |

  16. If sec A=sqrt2, find : (3 cot^2A+2sin^2A)/(tan^2A-cos^2A)

    Text Solution

    |

  17. If 5 cos theta = 3 , evaluate : ("cosec" theta-cottheta)/("cosec" thet...

    Text Solution

    |

  18. If cosec A + sin A = 5(1)/5 , find the value of "cosec"^2 A+ sin^2A.

    Text Solution

    |

  19. If 5 cos theta = 6 , sin theta , evalutate : tan theta

    Text Solution

    |

  20. If 5 cos theta = 6 , sin theta , evalutate : (12 sin theta - 3cos th...

    Text Solution

    |