Home
Class 9
MATHS
If sin3A=1 and 0 le A le 90^(@), find : ...

If `sin3A=1 and 0 le A le 90^(@)`, find :
sin A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin A \) given that \( \sin 3A = 1 \) and \( 0 \leq A \leq 90^\circ \). ### Step-by-Step Solution: 1. **Understanding the given equation**: We know that \( \sin 3A = 1 \). The sine function reaches its maximum value of 1 at specific angles. 2. **Finding the angle**: The sine function equals 1 at \( 90^\circ \) and at odd multiples of \( 90^\circ \). However, since \( 3A \) must be within the range of angles we are considering (and \( A \) must be between \( 0^\circ \) and \( 90^\circ \)), we can set: \[ 3A = 90^\circ \] 3. **Solving for \( A \)**: To find \( A \), we divide both sides of the equation by 3: \[ A = \frac{90^\circ}{3} = 30^\circ \] 4. **Finding \( \sin A \)**: Now that we have \( A = 30^\circ \), we need to find \( \sin A \): \[ \sin A = \sin 30^\circ \] 5. **Using known values**: We know from trigonometric ratios that: \[ \sin 30^\circ = \frac{1}{2} \] 6. **Final answer**: Therefore, the value of \( \sin A \) is: \[ \sin A = \frac{1}{2} \] ### Summary: The final answer is \( \sin A = \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

If sin3A=1 and 0 le A le 90^(@) , find : cos 2A

If sin3A=1 and 0 le A le 90^(@) , find : cos 2A

If sin3A=1 and 0 le A le 90^(@) , find : tan^(2)A-1/(cos^(2)A)

If sin 3A = 1 and 0 le A le 90^(@) . Find : (i) sin A (ii) cos 2A (iii) tan^(2)A - (1)/(cos^(2)A)

If 4 cos ^(2) A -3 =0 and 0^(@) le A le 90 ^(@) find : cos 3A

If 4 cos ^(2) A -3 =0 and 0^(@) le A le 90 ^(@) find : angla A

If 4 cos ^(2) A -3 =0 and 0^(@) le A le 90 ^(@) find : tan ^(2) A+ cos ^(2) A

Find A, if 0^(@) le A le 90^(@) and : 4 sin^(2) A - 3 = 0

If 0^(@) le A le 90^(@), find A, if : (sin A)/ (sec A - 1) + (sin A)/ (sec A + 1) = 2

If 4cos^(2)x(@)-1=0 and 0 le x^(@) le 90^(@) , find : sin^(2)x^(@)+cos^(2)x^(@)

ICSE-TRIGONOMETRICAL RATIOS OF STANDARD ANGLES-EXERCISE 23(C)
  1. If 4cos^(2)x(@)-1=0 and 0 le x^(@) le 90^(@), find : 1/(cos^(2)x^(@)...

    Text Solution

    |

  2. If 4sin^(2)theta-1=0 and angle theta is less than 90^(@), find the val...

    Text Solution

    |

  3. If sin3A=1 and 0 le A le 90^(@), find : sin A

    Text Solution

    |

  4. If sin3A=1 and 0 le A le 90^(@), find : cos 2A

    Text Solution

    |

  5. If sin3A=1 and 0 le A le 90^(@), find : tan^(2)A-1/(cos^(2)A)

    Text Solution

    |

  6. If 2cos2A=sqrt(3) and A is acute, find : A

    Text Solution

    |

  7. If 2cos2A=sqrt(3) and A is acute, find : sin 3A

    Text Solution

    |

  8. If 2cos2A=sqrt(3) and A is acute, find : sin^(2)(75^(@)-A)+cos^(2)(4...

    Text Solution

    |

  9. If sinx+cosy=1" and "x=30^(@), find the value of y.

    Text Solution

    |

  10. If 3tanA-5cosB=sqrt(3) and B=90^(@), find the value of A.

    Text Solution

    |

  11. From the given figure, find : cosx^(@)

    Text Solution

    |

  12. From the given figure, find : x^(@)

    Text Solution

    |

  13. From the given figure, find : 1/(tan^(2)x^(@))-1/(sin^(2)x^(@))

    Text Solution

    |

  14. From the given figure, find : Use tanx^(@), to find the value of ...

    Text Solution

    |

  15. Use the given figure to find : tantheta^(@)

    Text Solution

    |

  16. Use the given figure to find : theta^(@)

    Text Solution

    |

  17. Use the given figure to find : sin^(2)theta^(@)-cos^(2)theta^(@)

    Text Solution

    |

  18. Use the given figure to find : Use sintheta^(@) to find the value...

    Text Solution

    |

  19. Find the magnitude of angle A, if : 2sinAcosA-cosA-2sinA+1=0

    Text Solution

    |

  20. Find the magnitude of angle A, if : tanA-2cosAtanA+2cosA-1=0

    Text Solution

    |