Home
Class 9
MATHS
Find the magnitude of angle A, if : 2s...

Find the magnitude of angle A, if :
`2sinAcosA-cosA-2sinA+1=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\sin A \cos A - \cos A - 2\sin A + 1 = 0 \), we will follow these steps: ### Step 1: Group the terms We can rearrange the equation to group the terms involving \(\cos A\) and \(\sin A\): \[ 2\sin A \cos A - \cos A - 2\sin A + 1 = 0 \] ### Step 2: Factor out common terms We can factor out \(\cos A\) from the first two terms: \[ \cos A (2\sin A - 1) - 2\sin A + 1 = 0 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation: \[ \cos A (2\sin A - 1) = 2\sin A - 1 \] ### Step 4: Set the equation to zero Now we can set the equation to zero: \[ \cos A (2\sin A - 1) - (2\sin A - 1) = 0 \] ### Step 5: Factor the equation We can factor the equation: \[ (2\sin A - 1)(\cos A - 1) = 0 \] ### Step 6: Solve for \(\cos A\) and \(\sin A\) Now we have two equations to solve: 1. \(2\sin A - 1 = 0\) 2. \(\cos A - 1 = 0\) From the first equation: \[ 2\sin A = 1 \implies \sin A = \frac{1}{2} \] From the second equation: \[ \cos A = 1 \] ### Step 7: Find the angles Now we can find the angles corresponding to these values: 1. For \(\sin A = \frac{1}{2}\), the angle \(A\) can be \(30^\circ\) (or \(\frac{\pi}{6}\) radians). 2. For \(\cos A = 1\), the angle \(A\) is \(0^\circ\). ### Conclusion Thus, the possible values for angle \(A\) are: \[ A = 0^\circ \text{ or } 30^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

Find the magnitude of angle A, if : 2cos^(2)A-3cosA+1=0

Find the magnitude of angle A, if : 4sinAsin2A+1-2sin2A=2sinA

Find the magnitude of angle A, if : tanA-2cosAtanA+2cosA-1=0

Find the magnitude of angle A, if : 2sin^(2)A-3sinA+1=0

Find the magnitude of angle A, if : sin^(2)2A+sin^(2)60^(@)=1

Find A for 2sinAcosA−cosA−2sinA+1=0 ;-

cosA/(1−sinA) =

If 8tanA=15 , find sinA-cosA

Calculate the value of A, if : (sinA-1)(2cosA-1)=0

Calculate the value of A, if : (sinA-1)(2cosA-1)=0