Home
Class 12
PHYSICS
A projectile is projectile with velocity...

A projectile is projectile with velocity `kv_(e)` in vertically upward direction from the ground into the space (`v_(e)` is escape velocity and `klt1`). If air resistance is considered to be negligible then the maximum height from the centre of earth to which it can go, will be : (`R`=raduis of earth)

Promotional Banner

Similar Questions

Explore conceptually related problems

A projectile is projected with velocity 2/3 v_e vertically upward direction from ground into space, then height covered (R = Radius of earth)

A projectile is fired vertically upwards from the surface of the earth with a velocity Kv_(e) , where v_(e) is the escape velocity and Klt1 .If R is the radius of the earth, the maximum height to which it will rise measured from the centre of the earth will be (neglect air resistance)

A particle is given a velocity (v_(e ))/(sqrt(3)) in a vertically upward direction from the surface of the earth, where v_(e ) is the escape velocity from the surface of the earth. Let the radius of the earth be R. The height of the particle above the surface of the earth at the instant it comes to rest is :

The escape velocity from the surface of the earth is (where R_(E) is the radius of the earth )

A projectile is fired from the surface of earth of radius R with a velocity k upsilon_(e) (where upsilon_(e) is the escape velocity from surface of earth and k lt 1) . Neglecting air resistance, the maximum height of rise from centre of earth is

A projectile is fired from the surface of earth of radius R with a velocity etav_(e) where v_(e) is the escape velocity and eta lt 1 . Neglecting air resistance, the orbital velocity of projectile is -

A particles is fired vertically from the surface of the earth with a velocity Kv_(e) , where u_(e) is the escape velcocity ans Klt 1 . Neglecting air resistance , calcualte the heightto which it will rise from the surface of the earth .(R= radius of the earth ).

A ball of mass m is fired vertically upwards from the surface of the earth with velocity nv_(e) , where v_(e) is the escape velocity and nlt1 . Neglecting air resistance, to what height will the ball rise? (Take radius of the earth=R):-

A particle is projected vertically upwards from the surface of the earth (radius R_(e) ) with a speed equal to one fourth of escape velocity. What is the maximum height attained by it from the surface of the earth ?