Home
Class 11
MATHS
यदि xsqrt( (1+y) )+ ysqrt((1+ x))=0 तब...

यदि ` xsqrt( (1+y) )+ ysqrt((1+ x))=0` तब सिद्ध कीजिए की `(dy)/(dx) =- (1+x)^(-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

xsqrt(1+y)+ysqrt(1+x)=0 , then (dy)/(dx)=

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

xsqrt(x)+ysqrt(y)=asqrt(a)

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

(1-y)x(dy)/(dx)+(1+x)y=0

ysqrt(1-x^(2)) dy + x sqrt(1-y^(2)) dx=0