Home
Class 11
MATHS
If f(x)=(x^(2))/(2)-(x^(2))/(2)+x-16, fi...

If `f(x)=(x^(2))/(2)-(x^(2))/(2)+x-16`, find `f((1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f\left(\frac{1}{2}\right) \) for the function \( f(x) = \frac{x^2}{2} - \frac{x^2}{2} + x - 16 \), we can follow these steps: ### Step 1: Simplify the function First, let's simplify the function \( f(x) \): \[ f(x) = \frac{x^2}{2} - \frac{x^2}{2} + x - 16 \] Notice that \( \frac{x^2}{2} - \frac{x^2}{2} = 0 \). Therefore, we can simplify \( f(x) \) to: \[ f(x) = x - 16 \] ### Step 2: Substitute \( x = \frac{1}{2} \) Now, we need to find \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = \frac{1}{2} - 16 \] ### Step 3: Perform the arithmetic Next, we perform the subtraction: \[ f\left(\frac{1}{2}\right) = \frac{1}{2} - 16 = \frac{1}{2} - \frac{32}{2} = \frac{1 - 32}{2} = \frac{-31}{2} \] ### Final Answer Thus, the value of \( f\left(\frac{1}{2}\right) \) is: \[ f\left(\frac{1}{2}\right) = -\frac{31}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (f)|29 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (g)|37 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (d)|18 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos
  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2^(3x-5) , find f^(-1)(16)

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f(x)=(x^(2)-x)/(x^(2)+2x) , then find the domain and range of f. Show that f is one-one. Also, find the function (d(f^(-1)(x)))/(dx) and its domain.

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

f(x)=x^(2) . Find f^(-1) .

If f(x) = (3x-2)/(2x-3),AA x in R -{(3)/(2)} , " Find " f^(-1)

If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-x,(1)/(2)ltxle1):} then evaluate : lim_(xrarr(1)/(2)) f(x)