Home
Class 11
MATHS
Prove that f(x)=(1//x)logsqrt(x+sqrt(x^(...

Prove that `f(x)=(1//x)logsqrt(x+sqrt(x^(2)+1))` is an even function.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the function \( f(x) = \frac{1}{x} \log \sqrt{x + \sqrt{x^2 + 1}} \) is an even function, we need to show that \( f(-x) = f(x) \). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function: \[ f(x) = \frac{1}{x} \log \sqrt{x + \sqrt{x^2 + 1}} \] 2. **Calculate \( f(-x) \)**: We substitute \(-x\) into the function: \[ f(-x) = \frac{1}{-x} \log \sqrt{-x + \sqrt{(-x)^2 + 1}} \] Simplifying the expression inside the logarithm: \[ f(-x) = \frac{1}{-x} \log \sqrt{-x + \sqrt{x^2 + 1}} \] 3. **Factor Out the Negative**: We can factor out the negative from the logarithm: \[ f(-x) = -\frac{1}{x} \log \sqrt{-x + \sqrt{x^2 + 1}} \] 4. **Use Logarithmic Properties**: Using the property of logarithms, we can rewrite: \[ f(-x) = -\frac{1}{x} \cdot \frac{1}{2} \log(-x + \sqrt{x^2 + 1}) \] This can be expressed as: \[ f(-x) = \frac{1}{x} \cdot \left(-\frac{1}{2} \log(-x + \sqrt{x^2 + 1})\right) \] 5. **Simplify the Logarithmic Expression**: Notice that: \[ -x + \sqrt{x^2 + 1} = \sqrt{x^2 + 1} - x \] Therefore: \[ f(-x) = \frac{1}{x} \cdot \frac{1}{2} \log \sqrt{x + \sqrt{x^2 + 1}} = \frac{1}{x} \log \sqrt{x + \sqrt{x^2 + 1}} \] Thus: \[ f(-x) = f(x) \] 6. **Conclusion**: Since \( f(-x) = f(x) \), we conclude that \( f(x) \) is an even function.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (f)|29 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (g)|37 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (d)|18 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos
  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=log(x+sqrt(x^(2)+1)) , is (a) an even function (b) an odd function (c ) a periodic function (d) Neither an even nor an odd function.

Statement-1: The function f(x) given by f(x)=sin^(-1){log(x+sqrt(x^(2)+1))} is an odd function. Statement:2 The composition of two odd functions is an odd function.

The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function

The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

Show that f(x) =(x)/(sqrt(1+x)) =en (1+x) is an increasing function for x gt-1

The function f(x)=cos(log(x+sqrt(x^2+1))) is :

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is