Home
Class 11
MATHS
Express (i) 45^(@),(ii) 30^(@),(iii) 9^(...

Express (i) `45^(@),(ii) 30^(@),(iii) 9^(@)` in radians.

Text Solution

AI Generated Solution

The correct Answer is:
To express the given angles in radians, we will use the conversion factor that \(1 \text{ degree} = \frac{\pi}{180} \text{ radians}\). We will apply this conversion to each of the angles provided in the question. ### Step-by-step Solution: **(i) Convert 45 degrees to radians:** 1. Start with the conversion formula: \[ 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \] 2. Multiply both sides by 45 degrees: \[ 45 \text{ degrees} = 45 \times \frac{\pi}{180} \text{ radians} \] 3. Simplify the right side: \[ = \frac{45\pi}{180} \text{ radians} \] 4. Reduce the fraction: \[ = \frac{\pi}{4} \text{ radians} \] **(ii) Convert 30 degrees to radians:** 1. Use the same conversion formula: \[ 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \] 2. Multiply both sides by 30 degrees: \[ 30 \text{ degrees} = 30 \times \frac{\pi}{180} \text{ radians} \] 3. Simplify the right side: \[ = \frac{30\pi}{180} \text{ radians} \] 4. Reduce the fraction: \[ = \frac{\pi}{6} \text{ radians} \] **(iii) Convert 9 degrees to radians:** 1. Again, use the conversion formula: \[ 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \] 2. Multiply both sides by 9 degrees: \[ 9 \text{ degrees} = 9 \times \frac{\pi}{180} \text{ radians} \] 3. Simplify the right side: \[ = \frac{9\pi}{180} \text{ radians} \] 4. Reduce the fraction: \[ = \frac{\pi}{20} \text{ radians} \] ### Final Answers: - \(45^{\circ} = \frac{\pi}{4} \text{ radians}\) - \(30^{\circ} = \frac{\pi}{6} \text{ radians}\) - \(9^{\circ} = \frac{\pi}{20} \text{ radians}\)
Promotional Banner

Topper's Solved these Questions

  • ANGLES AND ARC. LENGTHS

    ICSE|Exercise EXERCISE 3|15 Videos
  • ANGLES AND ARC. LENGTHS

    ICSE|Exercise CHAPTER TEST|10 Videos
  • BASIC CONCEPTS OF POINTS AND THEIR COORDINATES

    ICSE|Exercise CHAPTER TEST|2 Videos

Similar Questions

Explore conceptually related problems

The inclination of the line x-y+3=0 with the positive direction of x-axis is (i) 45^(@) (ii) 135^(@) (iii) -45^(@) (iv) -135^(@)

Convert 45^(@) to radians.

Convert 45^(@) to radians.

Construct the following angles : (i) 60^(@) (ii) 30^(@) (iii) 15^(@)

Express (i) 1 radian, (ii) (pi)/(3) radians, (iii) (pi)/(15) radians in degrees.

Correct 30^(@) to radians :

Find the slope of the lines whose iclination is given : (i) 45^(@) (ii) 60^(@) (iii) 120^(@)

Express the following angles in radians. (i) 120^(@) " " (ii) -600^(@) (iii) -144^(@)

Construct the following angles : (i) 90^(@) (ii) 45^(@) (iii) 75^(@)

Express the following angles in radians (i) 1, (ii) 20^(@) (iii) 135^(@)