Home
Class 12
MATHS
Prove that: tan^(-1)((1-x^2)/(2x))+cot...

Prove that: `tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

Prove that 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))=pi

Solve for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),-1

Solve for x : tan^(-1)(2x)/(1-x^(2))+cot^(-1)(1-x^(2))/(2x))=pi/3, -1 lt x lt 1 .

tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)-1)/(2x))=-(4 pi)/(3)

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Solve the following equation for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(2 pi)/(3),x>0

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

prove that tan^(-1)x+cot^(-1)x=pi/2

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.