Home
Class 13
MATHS
Prove that (cosec theta-cot theta)^(2)=(...

Prove that `(cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove (cos ec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove the following identities: (cos ec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove that (1+cos theta)/(1-cos theta)+(1-cos theta)/(1+cos theta)=4cot theta*cos theta

Prove that ((1+cos theta)/(cos theta))((1-cos theta)/(cos theta))cosec^(2)theta=sec^(2)theta

To prove (cot theta+cos ec theta)^(2)=(1+cos theta)/(1-cos theta)

Prove that ( cot theta - cosec theta)^(2) = ( 1- cos theta )/( 1+ cos theta )

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

Prove that (cot theta-cos theta)/(cot theta+cos theta)=(cosec theta-1)/(cosec theta-1)

Prove that (cot theta+csc theta-1)/(cot theta-csc theta)=(cot theta+csc theta)(cot theta+csc theta-1)

Prove that : (cos theta)/(1-tan theta)+(sin theta)/(1-cot theta)=sin theta+cos theta