Home
Class 11
MATHS
Prove that: (cosx+cosy)^2+(sinx-siny)^2=...

Prove that: `(cosx+cosy)^2+(sinx-siny)^2=4cos^2``(x+y)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(cosx+cosy)^(2)|(sinx-siny)^(2)=4cos^(2)(x+y)/(2)

Prove that: (cos x+cos y)^(2)+(sin x-sin y)^(2)=4cos^(2)backslash(x+y)/(2)

Prove that: quad (cos x+cos y)^(2)+(sin x-sin y)^(2)=4cos^(2)(x+y)/(2)

If x+y+z= pi/2 , prove that : cos(x-y-z) + cos(y-z-x) + cos (z-x-y)-4cosx cosy cosz=0

(sinx-siny)/(cosx+cosy)=tan(x-y)/(2)

Prove that (1+sinx-cosx)/(1+sinx+cosx) +(1+sinx+cosx)/(1+sinx-cosx) =2 cosec x

Prove that (1+sinx-cosx)/(1+sinx+cosx) +(1+sinx+cosx)/(1+sinx-cosx) =2 cosec x

Evaluate: int(cosx(1+4cos2x))/(sinx+4sinxcos^2x)dx

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)