Home
Class 12
MATHS
If f(x) = (e^x+e^(-x))/2 then inverse of...

If `f(x) = (e^x+e^(-x))/2` then inverse of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(f(x))=e then domain of f(x) is

If f(x) = e^(x)(x-2)^(2) then

If f(x)=x e^(x(1-x)) , then f(x) is

Let f(x) = (e^(x) - e^(-x))/(2) and if g(f(x)) = x , then g((e^(1002) -1)/(2e^(501))) equals ...........

Let f:R rarr R be defined by f(x)=(e^(x)-e^(-x))/2* Is f(x) invertible? If so,find is inverse.

If f(x)=e^(x)(x^(2)+1) then find f'(x)

If f(x) = x^(1//x) , " then: f''(e) is

f(x) = x^(2) e^(-x) is increasing in

Let e^(f(x))=ln x. If g(x) is the inverse function of f(x), then g'(x) equal to: e^(x)(b)e^(x)+xe^(x+e^(2))(d)