Home
Class 13
MATHS
((1-i)/(1+i))^2=...

`((1-i)/(1+i))^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive integer n for which ((1-i)/(1+i))^(n^(2)) = 1 where i=sqrt(-1) , is

Find the lowest value of n such that ((1-i)/(1+i))^(n^(2))=1 , where n in N .

If ((1+i)/(1-i))^(m/2)=((1+i)/(-1+i))^(n/3)=1 . Find the G.C.D. of m,n

If ((1+i)/(1-i))^((m)/(2))=((1+i)/(1-i))^((n)/(3))=1, (m, ninN) then the greatest common divisor of the least values of m and n is .............

(1+2i)/(1-(1-i)^2)

((1-i)^(3))/(1-i^(3))=-2

Reduce ((1)/(1-4i)-(2)/(1+i))((3-4i)/(5+i)) to the standard form.

(2/(1-i) + 3/(1+i))((2+3i)/(4+5i)) is equal to