Home
Class 12
MATHS
underset(nto oo)lim{(1)/(n+1)+(1)/(n+2)+...

`underset(nto oo)lim{(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)}` is, equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n to oo) ((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

lim_ (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

lim_(n rarr oo)[(1)/(n)+(1)/(n+1)+(1)/(n+2)+.....+(1)/(2n)]

lim_(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n) is equal to :

lim_(xto oo) (1)/(n) {1+e^(1//n)+e^(2//n)+e^(3//n)+.....+e^((n-1)/(n))} is equal to