Home
Class 12
MATHS
1 . 2+2 . 3+3 . 4+.. .. to n terms =...

 `1 . 2+2 . 3+3 . 4+.. ..` to n terms =

A

1)`(n(n+1)(n+5))/(3)`

B

2)`(n(n+1)(n+2))/(3)`

C

3)`(4(4 n^(2)+6 n-1))/(3)`

D

4) `n(n+1)(n+1)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|32 Videos
  • MATHEMATICAL REASONING

    HIMALAYA PUBLICATION|Exercise Question Bank|97 Videos

Similar Questions

Explore conceptually related problems

If a=1+2+4+ . . . . upto n terms b=1+3+9+. . . . upto n terms c=1+5+25+. . . . upto n terms then Delta= |[a,2b,4 c],[2,2,2],[2^n,3^n,5^n]|=

Find the sum to indicated number of terms in each of the geometric progressions in Exercises 1, - a, a^2, - a^3, .......n terms (if a ne -1 )

Prove 1.4.7+2.5.8+3.6.9+....... upto n terms =(n)/(4)(n+1)(n+6)(n+7)

1+(1+2)/(2)+(1+2+3)/(3) +(1+2+3+4)/(4)+.. . to n terms =

((1)/(2) . (2)/(2))/(1^(3))+((2)/(3) . (3)/(2))/(1^(3)+2^(3)) +((3)/(2) . (4)/(2))/(1^(3)+2^(3)+3^(3))+.. . . to n terms

The sum of the series, (1)/(2.3) .2 + (2)/(3.4).2^(2) + (3)/(4.5).2^(3) + ….to n terms is

Prove by mathematical induction that 1.4+4.7+7.10+…. up to n terms =n(3n^(2)+3n-2)

Prove that by using the principle of mathematical induction for all n in N : 1.2.3+ 2.3.4+ ....+ n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)

IF 1+ 2 +3 + ……. N terms = 28 then n si equal to

HIMALAYA PUBLICATION-MATHEMATICAL INDUCTION AND SUMMATION OF SERIES-Question Bank
  1. The 10th common term between the series : 3+7+11+"……." and 1+ 6 + 1...

    Text Solution

    |

  2. If the sum of n terms of the series 2^(3)+4^(3)+6^(3)+.. is 3528 , the...

    Text Solution

    |

  3. 1 . 2+2 . 3+3 . 4+.. .. to n terms =

    Text Solution

    |

  4. The 99^(th)term of the series 2+7+14+23+34+.. ..

    Text Solution

    |

  5. If 3+(3+d) (1)/(4)+(3+2 d) (1)/(4^(2)) +.., oo is (44)/(9) thend=

    Text Solution

    |

  6. Find the sum to n terms of the series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)...

    Text Solution

    |

  7. If a(k)=(1)/(k(k+1)) for k=1,2,3, .., n, then (sum(k=1)^(n) a(k))^(...

    Text Solution

    |

  8. If 2^(3)+4^(3)+6^(3)+.. .+(2 n)^(3)=k n^(2)(n+1)^(2) then k=

    Text Solution

    |

  9. Find the sum of integers from 1 to 100 that are divisible by 2 or 5.

    Text Solution

    |

  10. If t(n)=(1)/(4)(n+2)(n+3) , n=1,2,3, .. then (1)/(t(1))+(1)/(t(2))...

    Text Solution

    |

  11. sum(k=1)^(5) (1^(3)+2^(3)+.. ..+k^(3))/(1+3+5+.. ..+(2 k-1))=

    Text Solution

    |

  12. For all integers n ge 1, which of the following is divisible by 9

    Text Solution

    |

  13. The sum of first n terms of the series 1^(2) + 2.2^(2) +3^(2) + 2. 4...

    Text Solution

    |

  14. If S(n)=(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+ ….. to n terms, then 6S(n)...

    Text Solution

    |

  15. 1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) foral...

    Text Solution

    |

  16. Sum to n terms of the series (1)/(2 . 5) +(1)/(5 . 8)+(1)/(8 . 11)+..=

    Text Solution

    |

  17. If n is a positive integer, then n^(3)+2n is divisible

    Text Solution

    |

  18. The number (49^(2)-4)(49^(3)-49) is divisible by

    Text Solution

    |

  19. The sum of 1^(st) n terms of the series (1^(2))/(1) + (1^(2) + 2^(2...

    Text Solution

    |

  20. 1+3+5+7+..+29+30+31+32+..+60=

    Text Solution

    |