Home
Class 12
MATHS
sum(k=1)^(5) (1^(3)+2^(3)+.. ..+k^(3))/(...

`sum_(k=1)^(5) (1^(3)+2^(3)+.. ..+k^(3))/(1+3+5+.. ..+(2 k-1))=`

A

1: 22.5

B

2: 24.5

C

3: 28.5

D

4: 32.5

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|32 Videos
  • MATHEMATICAL REASONING

    HIMALAYA PUBLICATION|Exercise Question Bank|97 Videos

Similar Questions

Explore conceptually related problems

The sum of first 9 terms of the series : ( 1^(3))/( 1) + ( 1^(3) + 2^(3))/( 1+ 3) + ( 1^(3) + 2^(3) + 3^(3))/( 1+ 3+ 5)+"........." is :

Evaluate sum_(k=1)^11(2+3^k)

If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

The sum of first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+"........" is

If 2^(3)+4^(3)+6^(3)+.. .+(2 n)^(3)=k n^(2)(n+1)^(2) then k=

Let (1+x^(2))^(2)(1+x)^(n) = sum_(k=0)^(n+4) a_(k) x^(k) . If a_(1) , a_(2) , a_(3) are in A.P., then n=

If sum_(r = 1)^(k) cos^(-1) beta r = (kpi)/(2), "for any k" ge 1 and A = sum_(r = 1)^(k)(beta r)^(r),"then" lim_(x rarr A) ((1 + x^(2))^(1//3)-(1-2x)^(1//4))/(x+x^(2)) is equal to :

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) equals:

The sum of n terms of the series : (1)/( 1.2.3.4) + ( 1)/( 2.3.4.5) + ( 1) / ( 3.4.5.6.)+"......." is :

HIMALAYA PUBLICATION-MATHEMATICAL INDUCTION AND SUMMATION OF SERIES-Question Bank
  1. Find the sum to n terms of the series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)...

    Text Solution

    |

  2. If a(k)=(1)/(k(k+1)) for k=1,2,3, .., n, then (sum(k=1)^(n) a(k))^(...

    Text Solution

    |

  3. If 2^(3)+4^(3)+6^(3)+.. .+(2 n)^(3)=k n^(2)(n+1)^(2) then k=

    Text Solution

    |

  4. Find the sum of integers from 1 to 100 that are divisible by 2 or 5.

    Text Solution

    |

  5. If t(n)=(1)/(4)(n+2)(n+3) , n=1,2,3, .. then (1)/(t(1))+(1)/(t(2))...

    Text Solution

    |

  6. sum(k=1)^(5) (1^(3)+2^(3)+.. ..+k^(3))/(1+3+5+.. ..+(2 k-1))=

    Text Solution

    |

  7. For all integers n ge 1, which of the following is divisible by 9

    Text Solution

    |

  8. The sum of first n terms of the series 1^(2) + 2.2^(2) +3^(2) + 2. 4...

    Text Solution

    |

  9. If S(n)=(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+ ….. to n terms, then 6S(n)...

    Text Solution

    |

  10. 1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) foral...

    Text Solution

    |

  11. Sum to n terms of the series (1)/(2 . 5) +(1)/(5 . 8)+(1)/(8 . 11)+..=

    Text Solution

    |

  12. If n is a positive integer, then n^(3)+2n is divisible

    Text Solution

    |

  13. The number (49^(2)-4)(49^(3)-49) is divisible by

    Text Solution

    |

  14. The sum of 1^(st) n terms of the series (1^(2))/(1) + (1^(2) + 2^(2...

    Text Solution

    |

  15. 1+3+5+7+..+29+30+31+32+..+60=

    Text Solution

    |

  16. The sum of n terms of the series 1+(1+3)+(1+3+5)+.. .. .. is

    Text Solution

    |

  17. 1+(3)/(2)+(5)/(2^(2))+(7)/(2^(3))+.. .. to infty=

    Text Solution

    |

  18. sum(i=1)^(n) sum(j=1)^(i)sum(k=1)^(j) 1 equals :

    Text Solution

    |

  19. The sum 1^(2)+1+2^(2)+2+3^(2)+3+..+n^(2)+n is

    Text Solution

    |

  20. The sum to infinity of the series : 1+ ( 2)/( 3) + ( 6)/( 3^(2)) +(...

    Text Solution

    |