Home
Class 12
MATHS
1/(2*5)+1/(5*8)+1/(8*11)+............1/(...

`1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) forall n in N.`

A

`(n)/(6 n+3)`

B

`(n)/(6 n-4)`

C

`(n+1)/(6 n+4)`

D

`(n)/(6 n+4)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|32 Videos
  • MATHEMATICAL REASONING

    HIMALAYA PUBLICATION|Exercise Question Bank|97 Videos

Similar Questions

Explore conceptually related problems

1/1.4+1/4.7+1/7.10+...+1/((3n-2)(3n+1))=n/((3n+1)) forall n in N.

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

1/1.2+1/2.3+1/3.4+…………….+1/(n(n+1))=n/(n+1) forall n in N.

1^(2)+2^(2)+3^(2)+............+n^(2)=(n(n+1)(2n+1))/6 forall n in N.

(1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/n^(2))=(n+1)^(2) forall n in N.

1.2+2.3+3.4+…………..+n(n+1)=n/3(n+1)(n+2) forall n in N.

1+2+3+............+n=(n(n+1))/2 forall n in N.

1*2*3+2*3*4+...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4 forall n in N.

a+ar+ar^(2)+...+ar^(n-1)=(a(1-r^(n)))/(1-r) forall n in N.

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

HIMALAYA PUBLICATION-MATHEMATICAL INDUCTION AND SUMMATION OF SERIES-Question Bank
  1. Find the sum to n terms of the series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)...

    Text Solution

    |

  2. If a(k)=(1)/(k(k+1)) for k=1,2,3, .., n, then (sum(k=1)^(n) a(k))^(...

    Text Solution

    |

  3. If 2^(3)+4^(3)+6^(3)+.. .+(2 n)^(3)=k n^(2)(n+1)^(2) then k=

    Text Solution

    |

  4. Find the sum of integers from 1 to 100 that are divisible by 2 or 5.

    Text Solution

    |

  5. If t(n)=(1)/(4)(n+2)(n+3) , n=1,2,3, .. then (1)/(t(1))+(1)/(t(2))...

    Text Solution

    |

  6. sum(k=1)^(5) (1^(3)+2^(3)+.. ..+k^(3))/(1+3+5+.. ..+(2 k-1))=

    Text Solution

    |

  7. For all integers n ge 1, which of the following is divisible by 9

    Text Solution

    |

  8. The sum of first n terms of the series 1^(2) + 2.2^(2) +3^(2) + 2. 4...

    Text Solution

    |

  9. If S(n)=(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+ ….. to n terms, then 6S(n)...

    Text Solution

    |

  10. 1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) foral...

    Text Solution

    |

  11. Sum to n terms of the series (1)/(2 . 5) +(1)/(5 . 8)+(1)/(8 . 11)+..=

    Text Solution

    |

  12. If n is a positive integer, then n^(3)+2n is divisible

    Text Solution

    |

  13. The number (49^(2)-4)(49^(3)-49) is divisible by

    Text Solution

    |

  14. The sum of 1^(st) n terms of the series (1^(2))/(1) + (1^(2) + 2^(2...

    Text Solution

    |

  15. 1+3+5+7+..+29+30+31+32+..+60=

    Text Solution

    |

  16. The sum of n terms of the series 1+(1+3)+(1+3+5)+.. .. .. is

    Text Solution

    |

  17. 1+(3)/(2)+(5)/(2^(2))+(7)/(2^(3))+.. .. to infty=

    Text Solution

    |

  18. sum(i=1)^(n) sum(j=1)^(i)sum(k=1)^(j) 1 equals :

    Text Solution

    |

  19. The sum 1^(2)+1+2^(2)+2+3^(2)+3+..+n^(2)+n is

    Text Solution

    |

  20. The sum to infinity of the series : 1+ ( 2)/( 3) + ( 6)/( 3^(2)) +(...

    Text Solution

    |