Home
Class 12
MATHS
The sum 1^(2)+1+2^(2)+2+3^(2)+3+..+n^(2)...

 The `sum 1^(2)+1+2^(2)+2+3^(2)+3+..+n^(2)+n` is

A

`(n(n+1))/(2)`

B

`[(n(n+1))/(2)]^(2)`

C

`(n(n+1)(n+2))/(3)`

D

`(n(n+1)(n+2)(n+3))/(4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|32 Videos
  • MATHEMATICAL REASONING

    HIMALAYA PUBLICATION|Exercise Question Bank|97 Videos

Similar Questions

Explore conceptually related problems

The sum of first n terms of the series 1^(2) + 2.2^(2) +3^(2) + 2. 4^(2) + 5^(2) + 2. 6^(2) + "........." is ( n ( n + 1)^(2))/( 2) when n is even. When, n is odd, the sum is :

Sum of the n terms of the series 1 . 2^(2)+2 . 3^(2)+3 . 4^(2)+..

The sum of 1^(st) n terms of the series (1^(2))/(1) + (1^(2) + 2^(2))/(1 + 2) + (1^(2) + 2^(2) + 3^(2))/(1 + 2 + 3) + ..

Find the sum to n terms series 1^(2) + (1^(2) + 2^(2)) (1^(2) + 2^(2) + 3^(2)) + . . . . .

1^(2) + 1+ 2^(2) + 2 + 3^(2) + 3+"............"+n^(2) + n is equal to :

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) , n in N

Find the sum of the series (1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n! .

For all n ge 1 prove that 1^(2)+2^(2)+ 3^(2)+4^(2)+….+n^(2)= (n(n+1)(2n+1))/(6)

Statement 1 The sum of first n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)_5^(2)-"……" can be =+-(n(n+1))/(2) ... Statement 2 Sum of first n narural numbers is (n(n+1))/(2)

The sum of : (x+ 2)^(n-1) + ( x+2) ^(n-2) (x+1) + ( x+2)^(n-3) (x+1)^(2) + "......." + ( x+ 1)^(n-1) equals :

HIMALAYA PUBLICATION-MATHEMATICAL INDUCTION AND SUMMATION OF SERIES-Question Bank
  1. Find the sum to n terms of the series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)...

    Text Solution

    |

  2. If a(k)=(1)/(k(k+1)) for k=1,2,3, .., n, then (sum(k=1)^(n) a(k))^(...

    Text Solution

    |

  3. If 2^(3)+4^(3)+6^(3)+.. .+(2 n)^(3)=k n^(2)(n+1)^(2) then k=

    Text Solution

    |

  4. Find the sum of integers from 1 to 100 that are divisible by 2 or 5.

    Text Solution

    |

  5. If t(n)=(1)/(4)(n+2)(n+3) , n=1,2,3, .. then (1)/(t(1))+(1)/(t(2))...

    Text Solution

    |

  6. sum(k=1)^(5) (1^(3)+2^(3)+.. ..+k^(3))/(1+3+5+.. ..+(2 k-1))=

    Text Solution

    |

  7. For all integers n ge 1, which of the following is divisible by 9

    Text Solution

    |

  8. The sum of first n terms of the series 1^(2) + 2.2^(2) +3^(2) + 2. 4...

    Text Solution

    |

  9. If S(n)=(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+ ….. to n terms, then 6S(n)...

    Text Solution

    |

  10. 1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) foral...

    Text Solution

    |

  11. Sum to n terms of the series (1)/(2 . 5) +(1)/(5 . 8)+(1)/(8 . 11)+..=

    Text Solution

    |

  12. If n is a positive integer, then n^(3)+2n is divisible

    Text Solution

    |

  13. The number (49^(2)-4)(49^(3)-49) is divisible by

    Text Solution

    |

  14. The sum of 1^(st) n terms of the series (1^(2))/(1) + (1^(2) + 2^(2...

    Text Solution

    |

  15. 1+3+5+7+..+29+30+31+32+..+60=

    Text Solution

    |

  16. The sum of n terms of the series 1+(1+3)+(1+3+5)+.. .. .. is

    Text Solution

    |

  17. 1+(3)/(2)+(5)/(2^(2))+(7)/(2^(3))+.. .. to infty=

    Text Solution

    |

  18. sum(i=1)^(n) sum(j=1)^(i)sum(k=1)^(j) 1 equals :

    Text Solution

    |

  19. The sum 1^(2)+1+2^(2)+2+3^(2)+3+..+n^(2)+n is

    Text Solution

    |

  20. The sum to infinity of the series : 1+ ( 2)/( 3) + ( 6)/( 3^(2)) +(...

    Text Solution

    |