Home
Class 12
MATHS
Prove that 1/2 cos^(-1) ((1-x)/(1+x))=ta...

Prove that `1/2 cos^(-1) ((1-x)/(1+x))=tan^(-1) sqrtx`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right) = \tan^{-1} \sqrt{x} \] we will follow these steps: ### Step 1: Start with the Left-Hand Side (LHS) We have: \[ LHS = \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right) \] ### Step 2: Use the Double Angle Formula for Tangent Recall the formula for the double angle of the tangent function: \[ \tan^{-1}(x) = \frac{1}{2} \cos^{-1} \left( \frac{1-x^2}{1+x^2} \right) \] We want to express \( \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right) \) in a form that relates to \( \tan^{-1} \). ### Step 3: Set \( x = \sqrt{x} \) Let \( x = \sqrt{x} \). Then, we can apply the double angle formula: \[ 2 \tan^{-1}(\sqrt{x}) = \cos^{-1} \left( \frac{1 - x}{1 + x} \right) \] ### Step 4: Substitute into the LHS Substituting back, we have: \[ \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right) = \tan^{-1}(\sqrt{x}) \] ### Step 5: Conclusion Thus, we have shown that: \[ \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right) = \tan^{-1} \sqrt{x} \] This completes the proof.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -2017

    ICSE|Exercise Section-B|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^2) (1+y^2))))

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^2)(1+y^2))))