Home
Class 12
MATHS
Evaluate int(0)^(pi//4) log (1+tan theta...

Evaluate `int_(0)^(pi//4) log (1+tan theta)d theta`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta \), we will use a symmetry property of definite integrals. ### Step 1: Define the integral Let: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta \] ### Step 2: Use the property of integrals Using the property of integrals, we can express \( I \) as: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan\left(\frac{\pi}{4} - \theta\right)) \, d\theta \] ### Step 3: Simplify \( \tan\left(\frac{\pi}{4} - \theta\right) \) Using the tangent subtraction formula: \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 + \tan \theta} \] Thus, \[ 1 + \tan\left(\frac{\pi}{4} - \theta\right) = 1 + \frac{1 - \tan \theta}{1 + \tan \theta} = \frac{(1 + \tan \theta) + (1 - \tan \theta)}{1 + \tan \theta} = \frac{2}{1 + \tan \theta} \] ### Step 4: Substitute back into the integral Now substituting this back into the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan \theta}\right) \, d\theta \] ### Step 5: Break down the logarithm Using the property of logarithms: \[ \log\left(\frac{2}{1 + \tan \theta}\right) = \log(2) - \log(1 + \tan \theta) \] Thus, we can write: \[ I = \int_{0}^{\frac{\pi}{4}} \log(2) \, d\theta - \int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta \] This simplifies to: \[ I = \log(2) \cdot \frac{\pi}{4} - I \] ### Step 6: Solve for \( I \) Now, we can combine like terms: \[ 2I = \log(2) \cdot \frac{\pi}{4} \] Thus, \[ I = \frac{\pi}{8} \log(2) \] ### Final Answer The value of the integral is: \[ \int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) \, d\theta = \frac{\pi}{8} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -2017

    ICSE|Exercise Section-B|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^(pi/4)log(1+tanx)dx .

Evaluate : int_0^(pi/4)log(1+tanx)dxdot

Evaluate: int_(-pi)^(3pi)log(s e c theta-t a ntheta)d theta

Evaluate: int_(-pi)^(3pi)log(s e ctheta-t a ntheta)d theta

int_0^(pi//2)(theta/sintheta)^2d theta=

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

STATEMENT 1: int_0^(pi/4)log(1+t a ntheta)d theta=pi/8log2. STATEMENT 2: int_0^(pi/2)logsin theta d theta =-pilog2.

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to