Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that `|{:(,a,b,b+c),(,c,a,c+a),(,b,c,a+b):}|=(a+b+c) (a-c)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \left| \begin{array}{ccc} a & b & b+c \\ c & a & c+a \\ b & c & a+b \end{array} \right| = (a+b+c)(a-c)^2, \] we will use properties of determinants. Let's denote the determinant as \( D \). ### Step 1: Write the determinant We start with the determinant: \[ D = \left| \begin{array}{ccc} a & b & b+c \\ c & a & c+a \\ b & c & a+b \end{array} \right|. \] ### Step 2: Perform row operations We will add the second and third rows to the first row. This operation does not change the value of the determinant. \[ R_1 \to R_1 + R_2 + R_3 \] This gives us: \[ D = \left| \begin{array}{ccc} a + b + c & b + a + c & b + c + c + a + a + b \\ c & a & c + a \\ b & c & a + b \end{array} \right|. \] ### Step 3: Simplify the first row Now, simplifying the first row: \[ D = \left| \begin{array}{ccc} a + b + c & a + b + c & 2(a + b + c) \\ c & a & c + a \\ b & c & a + b \end{array} \right|. \] ### Step 4: Factor out the common term We can factor out \( a + b + c \) from the first row: \[ D = (a + b + c) \left| \begin{array}{ccc} 1 & 1 & 2 \\ c & a & c + a \\ b & c & a + b \end{array} \right|. \] ### Step 5: Perform column operations Next, we will perform column operations to simplify further. We will subtract the first column from the second and subtract twice the first column from the third: \[ C_2 \to C_2 - C_1, \quad C_3 \to C_3 - 2C_1. \] This results in: \[ D = (a + b + c) \left| \begin{array}{ccc} 1 & 0 & 0 \\ c & a - c & c + a - 2c \\ b & c - b & a + b - 2b \end{array} \right|. \] ### Step 6: Simplify the determinant Now, simplifying the determinant further: \[ D = (a + b + c) \left| \begin{array}{ccc} 1 & 0 & 0 \\ c & a - c & -c + a \\ b & 0 & a - b \end{array} \right|. \] ### Step 7: Calculate the determinant The determinant simplifies to: \[ D = (a + b + c) \left( 1 \cdot \left| \begin{array}{cc} a - c & -c + a \\ 0 & a - b \end{array} \right| \right). \] Calculating the 2x2 determinant: \[ = (a + b + c) \cdot (a - c)(a - b). \] ### Step 8: Final expression Thus, we have: \[ D = (a + b + c)(a - c)(a - b). \] ### Step 9: Rearranging Rearranging gives us: \[ D = (a + b + c)(a - c)^2. \] ### Conclusion Thus, we have shown that: \[ \left| \begin{array}{ccc} a & b & b+c \\ c & a & c+a \\ b & c & a+b \end{array} \right| = (a+b+c)(a-c)^2. \] Hence proved.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -2017

    ICSE|Exercise Section-B|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants Prove that |{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),( -b,,-a,,a+b+c):}| = 2 (a+b) (b+c) (c+a)

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .

Using properties of determinants, Find |(b+c,a,a),(b,c+a,b),(c,c,a+b)|

Using properties of determinants, prove that: |{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a),(,a,b,x+c):}|=0 and x=0

Prove that : |{:(a,b,c),(b,c,a),(c,a,b):}|=3 a b c-a^(3)-b^(3)-c^(3)

Using properties of determinants, prove the following : |[a, a^2,bc],[b,b^2,ca],[c,c^2,ab]|=(a-b)(b-c)(c-a)(b c+c a+a b)

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Using properties of determinant, If f(x)= a + bx + cx^(2) , prove that |(a,b,c),(b,c,a),(c,a,b)|= -f(1)f(omega)f(omega^(2)), omega is a cube root of unity