Home
Class 12
MATHS
Solve : (x^2-yx^2)dy+(y^2+x^2y^2)dx=0...

Solve : `(x^2-yx^2)dy+(y^2+x^2y^2)dx=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x^2 - yx^2)dy + (y^2 + x^2y^2)dx = 0\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ (x^2 - yx^2)dy + (y^2 + x^2y^2)dx = 0 \] We can rearrange it as: \[ (x^2 - yx^2)dy = -(y^2 + x^2y^2)dx \] ### Step 2: Factor out common terms From the left-hand side, we can factor out \(x^2\): \[ x^2(1 - y)dy = -(y^2(1 + x^2))dx \] ### Step 3: Separate variables Now, we can separate the variables \(y\) and \(x\): \[ \frac{1 - y}{y^2} dy = -\frac{1 + x^2}{x^2} dx \] ### Step 4: Integrate both sides Next, we integrate both sides: \[ \int \frac{1 - y}{y^2} dy = -\int \frac{1 + x^2}{x^2} dx \] ### Step 5: Solve the left integral The left integral can be split: \[ \int \left(\frac{1}{y^2} - \frac{1}{y}\right) dy = \int y^{-2} dy - \int y^{-1} dy \] Calculating these integrals: \[ \int y^{-2} dy = -\frac{1}{y}, \quad \int y^{-1} dy = \ln |y| \] Thus, \[ -\frac{1}{y} - \ln |y| \] ### Step 6: Solve the right integral The right integral can also be split: \[ -\int \left(\frac{1}{x^2} + 1\right) dx = -\left(-\frac{1}{x} + x\right) = \frac{1}{x} - x \] ### Step 7: Combine results Putting it all together, we have: \[ -\frac{1}{y} - \ln |y| = \frac{1}{x} - x + C \] ### Step 8: Rearranging the equation Rearranging gives us: \[ \ln |y| + \frac{1}{y} + x - \frac{1}{x} - C = 0 \] This is the implicit solution to the differential equation.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -2017

    ICSE|Exercise Section-B|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

Solve: x(x-y) dy + y^(2) dx= 0

Solve: (x-y)^2(dy)/(dx)=a^2

Solve the following differential equation: (x^2-2x y)\ dy+(x^2-3xy+2y^2)dx=0

Solve: y\ dx-(x+2y^2)dy=0

Solve: (x-y)^2(dy)/(dx)=1

Solve: (x+y)^2(dy)/(dx)=a^2

Solve: x^2dy-y^2dx+xy^2(x-y)dy=0

Solve: y(2xy+1)dx+x(1+2xy+x^2y^2)dy=0

Solve (x-y^(2)x)dx=(y-x^(2)y)dy .

Solve (x+y)^(2)(dy)/(dx)=a^(2)