Home
Class 12
MATHS
Find the value of lambda for which the f...

Find the value of `lambda` for which the four points with position vectors `6hati-7hatj, 16hati-19hatj, lambdahatj-6hatk and 2hati-5hatj+10hatk` are coplanar.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the four points with position vectors \( \vec{A} = 6\hat{i} - 7\hat{j} \), \( \vec{B} = 16\hat{i} - 19\hat{j} \), \( \vec{C} = \lambda\hat{j} - 6\hat{k} \), and \( \vec{D} = 2\hat{i} - 5\hat{j} + 10\hat{k} \) are coplanar, we can use the condition that the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \) must be coplanar. This can be determined by checking if the scalar triple product of these vectors is zero. ### Step-by-Step Solution: 1. **Find the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \)**: - \( \vec{AB} = \vec{B} - \vec{A} = (16\hat{i} - 19\hat{j}) - (6\hat{i} - 7\hat{j}) = (16 - 6)\hat{i} + (-19 + 7)\hat{j} = 10\hat{i} - 12\hat{j} \) - \( \vec{AC} = \vec{C} - \vec{A} = (\lambda\hat{j} - 6\hat{k}) - (6\hat{i} - 7\hat{j}) = -6\hat{i} + (\lambda + 7)\hat{j} - 6\hat{k} \) - \( \vec{AD} = \vec{D} - \vec{A} = (2\hat{i} - 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = (2 - 6)\hat{i} + (-5 + 7)\hat{j} + 10\hat{k} = -4\hat{i} + 2\hat{j} + 10\hat{k} \) 2. **Set up the determinant for coplanarity**: The points are coplanar if the determinant of the matrix formed by these vectors is zero: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 10 & -12 & 0 \\ -6 & \lambda + 7 & -6 \\ -4 & 2 & 10 \end{vmatrix} = 0 \] 3. **Calculate the determinant**: Expanding the determinant: \[ = \hat{i} \begin{vmatrix} -12 & 0 \\ \lambda + 7 & -6 \end{vmatrix} - \hat{j} \begin{vmatrix} 10 & 0 \\ -6 & -6 \end{vmatrix} + \hat{k} \begin{vmatrix} 10 & -12 \\ -6 & \lambda + 7 \end{vmatrix} \] Calculating each of these 2x2 determinants: - For \( \hat{i} \): \[ = -12 \cdot (-6) - 0 \cdot (\lambda + 7) = 72 \] - For \( \hat{j} \): \[ = 10 \cdot (-6) - 0 \cdot (-6) = -60 \] - For \( \hat{k} \): \[ = 10(\lambda + 7) - (-12)(-6) = 10\lambda + 70 - 72 = 10\lambda - 2 \] Putting it all together: \[ 72 + 60 + (10\lambda - 2) = 0 \] \[ 130 + 10\lambda - 2 = 0 \] \[ 10\lambda + 128 = 0 \] \[ 10\lambda = -128 \] \[ \lambda = -12.8 \] ### Final Answer: The value of \( \lambda \) for which the four points are coplanar is \( \lambda = -12.8 \).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -2017

    ICSE|Exercise Section-B|10 Videos
  • MATHEMATICS - 2014

    ICSE|Exercise Section-C|6 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

Prove that four points position vectors 6hati-7hatj,16hati-19 hatj-4hatk,3hatj-6hatk and 2hati + 5hatj+ 10hatk are not coplanar.

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

If the four points with position vectors -2hati+hatj+hatk, hati+hatj+hatk, hatj-hatk and lamda hatj+hatk are coplanar then lamda= (A) 1 (B) 2/3 (C) -1 (D) 0

If the points whose position vectors are 2hati + hatj + hatk , 6hati - hatj + 2 hatk and 14 hati - 5 hatj + p hatk are collinear, then p =

The value of lamda for which the four points 2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk and hati-lamdahatj+6hatk are coplanar.

Find the value of lambda , if four points with position vectors 3 hati + 6 hatj + 9 hatk, hati + 2 hatj + 3 hatk, 2 hati + 3 hatj + hatk and 4 hati + 6 hatj + lambdahat k are coplanar.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The number of distinct real values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

Prove that the four points 6 hati - 7hatj, 16hati - 19 hatj - 4hatk, 3hatj - 6hatk and 2hati + 5hatj + 10 hatk form a tetrahedron in spacel.