Home
Class 12
MATHS
Solve 3 tan^(-1) x+cot^(-1)x=pi. a) 0 b)...

Solve `3 tan^(-1) x+cot^(-1)x=pi`. a) 0 b) 1 c) -1 d) 1/2

A

0

B

1

C

-1

D

1/2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 \tan^{-1} x + \cot^{-1} x = \pi \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 3 \tan^{-1} x + \cot^{-1} x = \pi \] We can express \( \cot^{-1} x \) in terms of \( \tan^{-1} x \): \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] Substituting this into the equation gives: \[ 3 \tan^{-1} x + \left( \frac{\pi}{2} - \tan^{-1} x \right) = \pi \] ### Step 2: Simplify the equation Now, simplify the equation: \[ 3 \tan^{-1} x - \tan^{-1} x + \frac{\pi}{2} = \pi \] This simplifies to: \[ 2 \tan^{-1} x + \frac{\pi}{2} = \pi \] ### Step 3: Isolate \( \tan^{-1} x \) Next, isolate \( 2 \tan^{-1} x \): \[ 2 \tan^{-1} x = \pi - \frac{\pi}{2} \] This simplifies to: \[ 2 \tan^{-1} x = \frac{\pi}{2} \] ### Step 4: Solve for \( \tan^{-1} x \) Now, divide both sides by 2: \[ \tan^{-1} x = \frac{\pi}{4} \] ### Step 5: Find \( x \) Taking the tangent of both sides gives: \[ x = \tan\left(\frac{\pi}{4}\right) \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \): \[ x = 1 \] ### Final Answer Thus, the solution to the equation \( 3 \tan^{-1} x + \cot^{-1} x = \pi \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER-2018

    ICSE|Exercise Section -B|8 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Competency based questions)|20 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1) x gt cot^(-1) x

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve for x : tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

sin(tan^(-1)99 + cot^(-1)99) is equal to a) 0 b) -1 c) 1/2 d) 1