Home
Class 12
MATHS
If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi, ...

If `tan^(-1) a+tan^(-1) b +tan^(-1)c=pi`, prove that a+b+c=abc.

Text Solution

Verified by Experts

The correct Answer is:
a+b+c=abc.
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER-2018

    ICSE|Exercise Section -B|8 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Competency based questions)|20 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

If three positive numbers a,b,c are in A.P ad tan^(-1)a,tan^(-1)b,tan^(-1)c are also in A.P such that b lt 1 and ac lt 1 then

Prove that : tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi