Home
Class 12
MATHS
Use properties of determinants to solve ...

Use properties of determinants to solve for x: `|{:(,x+a,b,c),(,c,x+b,a),(,a,b,x+c):}|=0 and x=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \[ \begin{vmatrix} x + a & b & c \\ c & x + b & a \\ a & b & x + c \end{vmatrix} = 0 \] we will use properties of determinants step by step. ### Step 1: Apply Column Operation We will apply the operation \( C_1 = C_1 + C_2 + C_3 \). This means we will add the second and third columns to the first column. The new first column becomes: - First row: \( (x + a) + b + c = x + a + b + c \) - Second row: \( c + (x + b) + a = x + a + b + c \) - Third row: \( a + b + (x + c) = x + a + b + c \) Thus, the determinant transforms to: \[ \begin{vmatrix} x + a + b + c & b & c \\ x + a + b + c & x + b & a \\ x + a + b + c & b & x + c \end{vmatrix} = 0 \] ### Step 2: Subtract Rows Next, we will perform row operations. We will subtract the second row from the first row and the third row from the second row. 1. \( R_1 = R_1 - R_2 \) 2. \( R_2 = R_2 - R_3 \) After these operations, we get: \[ \begin{vmatrix} 0 & b - (x + b) & c - a \\ 0 & (x + b) - b & a - (x + c) \\ x + a + b + c & b & x + c \end{vmatrix} = 0 \] This simplifies to: \[ \begin{vmatrix} 0 & -x & c - a \\ 0 & x & a - x - c \\ x + a + b + c & b & x + c \end{vmatrix} = 0 \] ### Step 3: Expand the Determinant Now we can expand the determinant along the first column. The first column has zeros, so we can ignore it: \[ = (x + a + b + c) \begin{vmatrix} -x & c - a \\ x & a - x - c \end{vmatrix} \] Calculating the 2x2 determinant: \[ = (x + a + b + c) \left( (-x)(a - x - c) - (c - a)(x) \right) \] This simplifies to: \[ = (x + a + b + c) \left( -ax + x^2 + xc - cx + ac - a^2 \right) \] ### Step 4: Set the Determinant to Zero Now we set the entire expression to zero: \[ (x + a + b + c) \left( -ax + x^2 + xc - cx + ac - a^2 \right) = 0 \] This gives us two cases: 1. \( x + a + b + c = 0 \) 2. The quadratic equation \( -ax + x^2 + xc - cx + ac - a^2 = 0 \) ### Step 5: Solve for x From the first case, we have: \[ x = - (a + b + c) \] From the second case, we can factor or use the quadratic formula to find the roots. However, we already know that one solution is \( x = 0 \). ### Final Solutions Thus, the final solutions for \( x \) are: \[ x = 0 \quad \text{or} \quad x = - (a + b + c) \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER-2018

    ICSE|Exercise Section -B|8 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Competency based questions)|20 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

Using properties of determinants, solve for x:|[a+x, a-x, a-x],[ a-x, a+x, a-x],[ a-x, a-x, a+x]|=0

Using properties of determinants, solve for x:|[a+x, a-x, a-x], [a-x, a+x, a-x], [a-x, a-x ,a+x]|=0

Using properties of determinant, find the value of x: |{:(x+a, a^(2), a^(3)), (x+b, b^(2), b^(3)), (x+c, c^(2), c^(3)):}|=0

Solve the following determinant equation: |[x+a, b, c], [c, x+b, a], [a ,b, x+c]|=0

Solve the equation |{:(x+a,x+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then

Using the property of determinants and without expanding, prove that: |[0,a,-b],[-a,0,-c],[ b, c,0]|=0

Using the property of determinants and without expanding, prove that: |0a-b-a0-c b c0|=0

Using the property of determinants and without expanding, prove that: |1b c a(b+c)1c a b(c+a)1a b x(a+b)|=0