Home
Class 12
MATHS
If x=tan(1/a log y), prove that (1+x^2) ...

If `x=tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2)+(2x-a) (dy)/(dx)=0`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER-2018

    ICSE|Exercise Section -B|8 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Competency based questions)|20 Videos

Similar Questions

Explore conceptually related problems

If x=tan(1/alogy) , show that (1+x^2)(d^2y)/(dx^2)+(2x-a)(dy)/(dx)=0 .

If x=tan(1/alogy)\ , show that (1+x^2)(d^2\ y)/(dx^2)+(2x-a)(dy)/(dx)=0

If x=tan(1/alogy)\ , show that (1-x^2)(d^2\ y)/(dx^2)+(2x-a)(dy)/(dx)=0

If logy=tan^(-1)x , prove that : (1+x^(2)) (d^(2)y)/(dx^(2))+(2x-1)(dy)/(dx)=0

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

If y=tan^(-1)x , show that (1+x^2)(d^2y)/(dx^2)+2x(dy)/(dx)=0 .

(i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=0 . (ii) If y=acos(log_(e)x)+bsin(log_(e)x) , then prove that x^2*(d^2y)/(dx^2)+x*dy/dx+y=0 .