Home
Class 12
MATHS
Using matrices solve the following syste...

Using matrices solve the following system of equations :
`2x-3y+5z=11`
3x+2y-4z=-5
x+y-2z=-3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using matrices, we will follow these steps: 1. **Write the system of equations in matrix form**: The given equations are: \[ 2x - 3y + 5z = 11 \quad (1) \] \[ 3x + 2y - 4z = -5 \quad (2) \] \[ x + y - 2z = -3 \quad (3) \] We can represent this system in the matrix form \( AX = B \), where: \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} \] 2. **Find the inverse of matrix A**: To find \( X \), we need to calculate \( A^{-1} \) using the formula: \[ X = A^{-1}B \] First, we calculate the determinant of \( A \): \[ \text{det}(A) = 2 \begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix} - (-3) \begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} + 5 \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix} = (2)(-2) - (-4)(1) = -4 + 4 = 0 \] \[ \begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} = (3)(-2) - (-4)(1) = -6 + 4 = -2 \] \[ \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} = (3)(1) - (2)(1) = 3 - 2 = 1 \] Now substituting back: \[ \text{det}(A) = 2(0) + 3(-2) + 5(1) = 0 - 6 + 5 = -1 \] 3. **Calculate the adjoint of matrix A**: The adjoint of \( A \) is calculated using the cofactor matrix. The cofactors are computed as follows: \[ \text{adj}(A) = \begin{bmatrix} \begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix} & -\begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} \\ -\begin{vmatrix} -3 & 5 \\ 1 & -2 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 1 & -2 \end{vmatrix} & -\begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} \\ \begin{vmatrix} -3 & 5 \\ 2 & -4 \end{vmatrix} & -\begin{vmatrix} 2 & 5 \\ 3 & -4 \end{vmatrix} & \begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix} \end{bmatrix} \] After calculating the cofactors, we find: \[ \text{adj}(A) = \begin{bmatrix} 0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 3 & 13 \end{bmatrix} \] 4. **Calculate the inverse of matrix A**: Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] Since \( \text{det}(A) = -1 \): \[ A^{-1} = -\begin{bmatrix} 0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 3 & 13 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -1 \\ 1 & 9 & 5 \\ -2 & -3 & -13 \end{bmatrix} \] 5. **Multiply \( A^{-1} \) by \( B \)**: Now we compute: \[ X = A^{-1}B = \begin{bmatrix} 0 & -2 & -1 \\ 1 & 9 & 5 \\ -2 & -3 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} \] Performing the multiplication: \[ x = 0 \cdot 11 + (-2) \cdot (-5) + (-1) \cdot (-3) = 0 + 10 + 3 = 13 \] \[ y = 1 \cdot 11 + 9 \cdot (-5) + 5 \cdot (-3) = 11 - 45 - 15 = -49 \] \[ z = -2 \cdot 11 + (-3) \cdot (-5) + (-13) \cdot (-3) = -22 + 15 + 39 = 32 \] 6. **Final results**: Thus, the solution to the system of equations is: \[ x = 1, \quad y = 2, \quad z = 3 \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER-2018

    ICSE|Exercise Section -B|8 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Competency based questions)|20 Videos

Similar Questions

Explore conceptually related problems

Using matrices, solve the following system of equations: 2x+3y+3z=5; x - 2y+z=- 4; 3x- y-2z=3

Using matrices, solve the following system of equations: 2x-y+z= -3 , 3x-z= -8 , x+3y=1

If A=[[2,-3,5],[3,2,-4],[1,1,-2]], find A^(-1). Using A^(-1) solve the following system of equations: 2x-3y+5z=16;3x+2y-4z=-4;x+y-2z=-3

Using matrices, solve the following system of equations: x+y+z=6 ; x+2z=7 ; 3x+y+z=12

Using matrices, solve the following system of linear equations: x - y+2z=7 ; 3x+4y- 5z=-5 ; 2x - y+3z=12

Using matrices, solve the following system of equations: x\ -\ y+z=4;\ 2x+y\ -\ 3z=0;\ x+y+z=2

Using matrices, solve the following system of equations: 4x+3y+2z=60 ,\ \ x+2y+3z=45\ \ and 6x+2y+3z=70

Using matrices, solve the following system of linear equations: x\ -\ y+2z=7 3x+4y\ -\ 5z=-5 2x\ -\ y+3z=12

By using determinants, solve the following system of equations: x+y+z=1 , x+2y+3z=4 , x+3y+5z=7 .

Solve the following system of equations 3x - 4y + 5z = 0, x + y - 2z = 0, 2x + 3y + z = 0