Home
Class 12
MATHS
Evaluate int (x-1)/sqrt(x^2-x) dx...

Evaluate `int (x-1)/sqrt(x^2-x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{x-1}{\sqrt{x^2 - x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x-1}{\sqrt{x^2 - x}} \, dx \] ### Step 2: Simplify the Numerator We can express \( x - 1 \) in a different form. Notice that: \[ x - 1 = \frac{2x - 2}{2} = \frac{2(x - 1)}{2} = \frac{2x - 1 - 1}{2} \] Thus, we can rewrite the integral as: \[ I = \int \frac{1}{2} \left( \frac{2x - 1}{\sqrt{x^2 - x}} - \frac{1}{\sqrt{x^2 - x}} \right) \, dx \] ### Step 3: Split the Integral Now we can split the integral into two parts: \[ I = \frac{1}{2} \int \frac{2x - 1}{\sqrt{x^2 - x}} \, dx - \frac{1}{2} \int \frac{1}{\sqrt{x^2 - x}} \, dx \] ### Step 4: Substitution for the First Integral Let \( y = x^2 - x \). Then, the derivative \( dy = (2x - 1) \, dx \). Thus, we can rewrite the first integral: \[ \int \frac{2x - 1}{\sqrt{x^2 - x}} \, dx = \int \frac{1}{\sqrt{y}} \, dy \] This evaluates to: \[ 2\sqrt{y} + C_1 = 2\sqrt{x^2 - x} + C_1 \] ### Step 5: Evaluate the Second Integral For the second integral, we have: \[ \int \frac{1}{\sqrt{x^2 - x}} \, dx \] This integral can be simplified further. We rewrite \( x^2 - x \) as: \[ x^2 - x = \left( x - \frac{1}{2} \right)^2 - \frac{1}{4} \] Thus, we can use the formula for the integral of the form \( \int \frac{1}{\sqrt{x^2 - a^2}} \, dx \): \[ \int \frac{1}{\sqrt{\left( x - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}} \, dx = \ln \left| x - \frac{1}{2} + \sqrt{\left( x - \frac{1}{2} \right)^2 - \frac{1}{4}} \right| + C_2 \] ### Step 6: Combine the Results Combining both parts, we get: \[ I = \frac{1}{2} \left( 2\sqrt{x^2 - x} \right) - \frac{1}{2} \ln \left| x - \frac{1}{2} + \sqrt{\left( x - \frac{1}{2} \right)^2 - \frac{1}{4}} \right| + C \] This simplifies to: \[ I = \sqrt{x^2 - x} - \frac{1}{2} \ln \left| x - \frac{1}{2} + \sqrt{\left( x - \frac{1}{2} \right)^2 - \frac{1}{4}} \right| + C \] ### Final Answer Thus, the evaluated integral is: \[ I = \sqrt{x^2 - x} - \frac{1}{2} \ln \left| x - \frac{1}{2} + \sqrt{\left( x - \frac{1}{2} \right)^2 - \frac{1}{4}} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER-2018

    ICSE|Exercise Section -B|8 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Competency based questions)|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate: int(x-1)/sqrt (x^2-1)dx

Evaluate int(x+1)/sqrt (2x^2+x-3)dx

Evaluate: int(x-1)/(sqrt(x^2+1))\ dx

Evaluate: int(x+1)/sqrt (1+x^2)dx

Evaluate: int1/(sqrt(5x^2-2x))\ dx

Evaluate: int(x+1)\ sqrt(x^2-x+1)\ dx

Evaluate: int(x-1)sqrt(1+x+x^(2)) dx

Evaluate: int(2x+1)/sqrt(x^2+2x-1)dx

Evaluate: int(x+1)/(sqrt(x^2+1))\ dx