Home
Class 12
MATHS
Prove that: (cosA+cosB)^2+(sinA-s inB)^2...

Prove that: `(cosA+cosB)^2+(sinA-s inB)^2=4cos^2((A+B)/2)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cosA+cosB)^(2)+(sinA+sinB)^(2)=4cos^(2)(A-B)/2

Prove that: (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)(A-B)/(2)

Prove that : (sinA+cosA)^(2)+(sinA-cosA)^(2)=2

Prove that 4sinA.cosA.cos2A=sin4A

Prove that: (1+cosA+sinA)/(1+cosA-sinA)=(1+sinA)/(cosA)

In DeltaABC , Prove that: cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

Prove that: (1+sinA-cosA)/(1+sinA+cosA)=tanA/2

Prove that (1+cosA)/(sinA) + (sinA)/(1+cosA) = 2/(sin A)