Home
Class 12
MATHS
यदि cos y = x cos (a+y) तथा cos a ne +-1...

यदि `cos y = x cos (a+y)` तथा `cos a ne +-1`, तो सिद्ध कीजिये कि `y=(dy)/(dx)=(cos^(2)(a+y))/(" sin a")`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

Solve (dy)/(dx)=cos(x+y)-sin(x+y) .

cos x cos y dy - sin x sin y dx=0

sin x cos y+(dy)/(dx)cos x sin y=0

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

cos y (dy) / (dx) + sin y cos x = sin x cos x