Home
Class 12
MATHS
Let a, b, c ne three distinct non-zero r...

Let `a`, `b`, `c` ne three distinct non-zero real numbers satisfying the system of equation `(1)/(a)+(1)/(a-1)+(1)/(a-2)=1` , `(1)/(b)+(1)/(b-1)+(1)/(b-2)=1` , `(1)/(c )+(1)/(c-1)+(1)/(c-2)=1`. Then `abc=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a , b , c ne three distinct non-zero real numbers satisfying the system of equation (1)/(a)+(1)/(a-1)+(1)/(a-2)=1 , (b)+(1)/(b-1)+(1)/(b-2)=1 , (1)/(c )+(1)/(c-1)+(1)/(c-2)=1 . Then abc=

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

If a, b, c are three distinct positive real numbers, then the least value of ((1+a+a^(2))(1+b+b^(2))(1+c+c^(2)))/(abc) , is

Let a,b, and c be rel numbers which satisfy the equation a+(1)/(bc)=(1)/(5),b+(1)/(ac)=(-1)/(15), and c+(1)/(ab)=(1)/(3) The value of (c-b)/(c-a) is equal to

If a, b, c are distinct positive real numbers such that a+(1)/(b)=4,b+(1)/( c )=1,c+(1)/(d)=4 and d+(1)/(a)=1 , then

((1)/(a)-(1)/(b+c))/((1)/(a)+(1)/(b+c))(1+(b^(2)+c^(2)-a^(2))/(2bc)):(a-b-c)/(abc)

If a,b, and c are distinct positive real numbers such that a+b+c=1, then prove tha ((1+a)(1+b)(1+c))/((1-a)(1-b)(1-c))>8

Let a,b and c be three positive real numbers such that their product is unity,then the least value of (1+a)(1+b)(1+c) is

If (a)/(b+c)=(b)/(c+a)=(c)/(a+b)=K, then the value of K is +-(1)/(2)(b)(1)/(2) or -1(c)-1(d)(1)/(2)

If a, b and c are non-zero real numbers and |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=0 , then what is the value of (1)/(a) + (1)/(b) + (1)/(c) ?