Home
Class 12
MATHS
ysqrt(1-x^(2)) dy + x sqrt(1-y^(2)) dx=0...

`ysqrt(1-x^(2)) dy + x sqrt(1-y^(2)) dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following equation is linear? sqrt(1-x^(2))dx+sqrt(1-y^(2))dy=0

If ysqrt(1-x^(2)) +xsqrt( 1-y^(2)) =1,then (dy)/(dx)=

General solution of x sqrt(1-y^(2))dx-ysqrt(1-x^(2))dy=0 is

ysqrt(1-x^(2))+xsqrt(1-y^(2))=1,"show that "(dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

The solution of x sqrt(1+y^(2))dx+y sqrt(1+x^(2))dy=0

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) = ?