Home
Class 12
MATHS
int tan^(-1)sqrt((1-sinx)/(1+sinx))dx....

`int tan^(-1)sqrt((1-sinx)/(1+sinx))dx.`

Promotional Banner

Similar Questions

Explore conceptually related problems

inttan^(- 1)sqrt((1-sinx)/(1+sinx))dx ,-pi/2

Differentiate the following w.r.t. x : tan^(-1)sqrt((1+sinx)/(1-sinx))

If y = tan^(-1) sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) "at x = (pi)/(6) is

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))}, -pi/2

int(sinx)/((1+sinx))dx=?

int(sinx)/((1+sinx))dx=?

int(sinx)/((1-sinx))dx=?

If y=tan^(-1)sqrt(((1+sinx)/(1-sinx))),(pi)/(2)ltxltpi, then (dy)/(dx) equals to

The value of tan^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} is : ((pi)/(2) lt x lt pi)

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to