Home
Class 12
MATHS
int(0)^( pi/2)cos^(3)xsinxdx...

`int_(0)^( pi/2)cos^(3)xsinxdx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)cos^(3)xdx

int_(0)^( pi)cos^(3)xdx=

int_(0)^( pi/2)cos^(6)xdx

"int_(0)^( pi/2)cos^(n)xdx

int_(0)^(2 pi)cos^(4)xdx

int_(0)^(2 pi)cos^(7)xdx

If I_(I)=int_(0)^( pi/2)cos(sin x)dx,I_(2)=int_(0)^((pi)/(2))sin(cos x)d, and I_(3)=int_(0)^((pi)/(2))cos xdx then find the order in which the values I_(1),I_(2),I_(3), exist.

int_(0)^( pi)|cos x|^(3)dx

int_(0)^( pi/2)sin x*cos^(3)xdx

int_(0)^( pi/2)sin^(3)x cos xdx=?