Home
Class 11
MATHS
Find lim(x->0)f(x) and lim(x->1)f(x) , w...

Find `lim_(x->0)f(x)` and `lim_(x->1)f(x)` , where `f(x)=[(2x+3), x<=0, 3(x+1), x>0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(x rarr0)f(x) and lim_(x rarr1)f(x), where f(x)=[(2x+3),x 0

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

lim_(x rarr0)f(x)and(lim)_(x rarr1)f(x), where f(x)=[2x+3,x 0

lim_(x rarr1)f(x), where f(x)={x^(2)-1,x 1

Find lim_(x to 0)f(x) , where f(x)=abs(x)-5.

Evaluate lim_(xrarr0) f(x) , where

Given f(x)=(ax+b)/(x+1), lim_(x to oo)f(x)=1 and lim_(x to 0)f(x)=2 , then f(-2) is

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

Evaluate (lim_(x rarr0)f(x), where f(x)=[(|x|)/(x),x!=0,0,x=0