Home
Class 12
MATHS
If y=sqrt(x)+(1)/sqrt(x), then show that...

If `y=sqrt(x)+(1)/sqrt(x)`, then show that `2x(dy)/(dx)+y=2sqrt(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

If y=sqrt(x)+(1)/(x), Show that 2x(dy)/(dx)+y=2sqrt(x)

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=sqrt(x)+(1)/(sqrt(x))," then: "2x(dy)/(dx)+y=

If y=sqrt((x)/(a))+sqrt((a)/(x))," then: "2xy(dy)/(dx)=

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x+1)+sqrt(x-1)," then: "2sqrt(x^(2)-1)*(dy)/(dx)=

If sqrt(x) + sqrt(y) = sqrt(a) , then (dy)/(dx) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt(a))